一个超几何函数等式

\[\Large\displaystyle {\;}_3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};1,\frac{3}{2};1 \right)=\frac{4\mathbf{G}}{\pi} \]


\(\Large\mathbf{Proof:}\)
Well, after simplifying the pochhammer symbols we get that it is is equal to the following sum:

\[S= \sum_{n=0}^{\infty} \binom{2n}{n}^2 \frac1{2^{4n} (2n+1)} \]

It is now easy to finish off using the integral (which can be calculated using the beta function and Legendre's duplication formula):

\[\int_0^1 \frac{x^{2 n}}{\sqrt{1-x^2}}\mathrm{d}x=\frac{\pi}{2} \binom{2n}{n}\frac1{2^{2n}} \]

and also the power series expansion of arcsin:

\[\sin^{-1} x=\sum_{n=0}^{\infty} \binom{2n}{n} \frac{x^{2n+1}}{2^{2n}(2n+1)} \]

Thus we get:

\[\begin{align*} S&= \frac{2}{\pi}\sum_{n=0}^{\infty} \binom{2n}{n} \frac1{2^{2n}(2n+1)} \int_0^1 \frac{x^{2 n}}{\sqrt{1-x^2}}\mathrm{d}x \\&= \frac{2}{\pi} \int_0^1 \frac1{\sqrt{1-x^2}} \frac{\sin^{-1} x}{x} \mathrm{d}x \\&=\frac{2}{\pi} \int_0^{\large\frac{\pi}{2}} \frac{x}{\sin x}\mathrm{ d}x\\&=\frac{2}{\pi }\cdot 2\mathbf{G}\\&=\Large\boxed{\color{blue}{\dfrac{4\mathbf{G}}{\pi }}} \end{align*}\]

posted @ 2016-05-05 11:09  Renascence_5  阅读(525)  评论(0编辑  收藏  举报