关于Euler-Poisson积分的几种解法

方法1:因为积分值只与被积函数和积分域有关,与积分变量无关,所以

\[I^{2}=\left ( \int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x \right )^{2}=\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x~~\cdot \int_{0}^{\infty }e^{-y^{2}}\mathrm{d}y=\int_{0}^{\infty }\int_{0}^{\infty }e^{-\left ( x^{2}+y^{2} \right )}\mathrm{d}x\mathrm{d}y \]

用极坐标系下二重积分的计算法

\[I=\int_{0}^{\frac{\pi }{2}}\mathrm{d}\theta \int_{0}^{\infty }e^{-r^{2}}r\mathrm{d}r=\frac{\pi }{2}\left ( -\frac{1}{2}e^{-r^{2}} \right )\Bigg|_{0}^{\infty }=\frac{\pi }{4} \]

\(e^{-r^{2}}\geq 0\), 则 \(I>0\). 即

\[I=\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x=\sqrt{\frac{\pi }{4}}=\frac{\sqrt{\pi }}{2} \]

方法2:因为 \(\displaystyle \left ( 1+\frac{x^{2}}{n} \right )^{-n}\) 当 $n\rightarrow +\infty $ 时一致收敛于 \(e^{-x^{2}}\), 利用积分号下取极限,则有

\[I=\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x=\int_{0}^{\infty }\left [ \lim_{n\rightarrow \infty }\left ( 1+\frac{x^{2}}{n} \right )^{-n} \right ]\mathrm{d}x=\lim_{n\rightarrow \infty }\int_{0}^{\infty }\left ( 1+\frac{x^{2}}{n} \right )^{-n}\mathrm{d}x \]

\(x=\sqrt{nt}\), 则

\[I=\lim_{n\rightarrow \infty }\sqrt{n}\int_{0}^{\infty }\frac{1}{\left ( 1+t^{2} \right )^{n}}\mathrm{d}t=\sqrt{n}I_n \]

由于

\[\begin{align*} I_{n-1}&=\int_{0}^{\infty }\frac{1}{\left ( 1+t^{2} \right )^{n-1}}\mathrm{d}t=\frac{t}{\left ( 1+t^{2} \right )^{n-1}}\Bigg|_{0}^{\infty }+2\left ( n-1 \right )\int_{0}^{\infty }\frac{1}{\left ( 1+t^{2} \right )}\mathrm{d}t\\ &=2\left ( n-1 \right )I_{n-1}-2\left ( n-1 \right )I_n \end{align*}\]

所以 \(\displaystyle I_n=\frac{2n-3}{2n-2}I_{n-1}\), 而 \(\displaystyle I_1=\int_{0}^{\infty }\frac{1}{1+t^{2}}\mathrm{d}t=\frac{\pi }{2}\), 递推得

\[I_n=\frac{\left ( 2n-3 \right )!!}{\left ( 2n-2 \right )!!}\cdot \frac{\pi }{2} \]

因此 \(\displaystyle \int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x=\lim_{n\rightarrow \infty }\frac{\sqrt{n}\left ( 2n-3 \right )!!}{\left ( 2n-2 \right )!!}\cdot \frac{\pi }{2}\). 根据Wallis公式,有

\[\frac{\pi }{2}=\lim_{n\rightarrow \infty }\frac{\left [ \left ( 2n \right )!! \right ]^{2}}{\left ( 2n+1 \right )\left [ \left ( 2n-1 \right )!! \right ]^{2}}=\lim_{n\rightarrow \infty }\frac{\left [ \left ( 2n-2 \right )!! \right ]^{2}}{\left ( 2n-1 \right )\left [ \left ( 2n-1 \right )!! \right ]^{2}} \]

所以

\[\begin{align*} I&=\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x=\frac{\pi }{2}\lim_{n\rightarrow \infty }\frac{\sqrt{n}\left ( 2n-3 \right )!!}{\left ( 2n-2 \right )!!}=\frac{\pi }{2}\lim_{n\rightarrow \infty }\frac{\left ( 2n-3 \right )!!\sqrt{2n-1}}{\left ( 2n-2 \right )!!}\cdot \sqrt{\frac{n}{2n-1}}\\ &=\frac{\pi }{2}\cdot \sqrt{\frac{2}{\pi }}\cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{\pi }}{2} \end{align*}\]

方法3:考虑两个含参变量积分

\[f\left ( x \right )=\left ( \int_{0}^{x}e^{-t^{2}}\mathrm{d}t \right )^{2}~~,~~g\left ( x \right )=\int_{0}^{1}\frac{e^{-x^{2}\left ( 1+u^{2} \right )}}{1+u^{2}}\mathrm{d}u \]

利用积分号下微分法,得

\[\begin{align*} f'\left ( x \right )&= 2e^{-x^{2}}\int_{0}^{x}e^{-t^{2}}\mathrm{d}t\\ g'\left ( x \right )&=\int_{0}^{1}\frac{\partial }{\partial x}\left [ \frac{e^{-x^{2}\left ( 1+u^{2} \right )}}{1+u^{2}} \right ]\mathrm{d}u=-2xe^{-x^{2}}\int_{0}^{1}e^{-x^{2}u^{2}}\mathrm{d}u \end{align*}\]

对后一积分,令\(xu=t\), 则

\[g'\left ( x \right )=-2xe^{-x^{2}}\int_{0}^{x}e^{-t^{2}}\mathrm{d}t=-f'\left ( x \right )~~~\left ( x\geq 0 \right ) \]

于是

\[\begin{align*} f\left ( x \right )+g\left ( x \right )=c~~~\left ( x\geq 0 \right )\tag1 \end{align*}\]

由于 \(\displaystyle f(0)=0 , g\left ( 0 \right )=\frac{\pi }{4}\), 故 \(c=\dfrac{\pi }{4}\), 即

\[f(x)+g(x)=\dfrac{\pi }{4}~~~\left ( x\geq 0 \right ) \]

\(u\in \left [ 0,1 \right ]\), 有

\[0\leq \frac{e^{-x^{2}\left ( 1+u^{2} \right )}}{1+u^{2}}\leq e^{-x^{2}u^{2}}\leq e^{-x^{2}}~~~\left ( x\geq 0 \right ) \]

因此,当 $x\rightarrow \infty $ 时,函数 \(\displaystyle \frac{e^{-x^{2}\left ( 1+u^{2} \right )}}{1+u^{2}}\) 关于 \(u\in \left [ 0,1 \right ]\) 一致的趋于0.

\[\lim_{x\rightarrow \infty }g\left ( x \right )=\lim_{x\rightarrow \infty }\int_{0}^{1}\frac{e^{-x^{2}\left ( 1+u^{2} \right )}}{1+u^{2}}\mathrm{d}u=\int_{0}^{1}\lim_{x\rightarrow \infty }\frac{e^{-x^{2}\left ( 1+u^{2} \right )}}{1+u^{2}}\mathrm{d}u=0 \]

从而,由 \(f(x)\) 的定义及(1),得

\[I=\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x=\sqrt{\lim_{x\rightarrow \infty }f\left ( x \right )}=\sqrt{\lim_{x\rightarrow \infty }\frac{\pi }{4}-g\left ( x \right )}=\sqrt{\frac{\pi }{4}}=\frac{\sqrt{\pi }}{2} \]

方法4:\(\displaystyle f\left ( t \right )=\int_{0}^{\infty }e^{-tx^{2}}\mathrm{d}x\), 对 \(f(t)\) 取拉普拉斯变换,得

\[\mathcal{L}\left ( \int_{0}^{\infty }e^{-tx^{2}}\mathrm{d}x \right )=\int_{0}^{\infty }\int_{0}^{\infty }e^{-tx^{2}}e^{-st}\mathrm{d}t\mathrm{d}x=\int_{0}^{\infty }\mathcal{L}\left ( e^{-tx^{2}} \right )\mathrm{d}x=\int_{0}^{\infty }\frac{\mathrm{d}x}{s+x^{2}}=\frac{\pi }{2\sqrt{s}} \]

再取拉普拉斯逆变换,有 \(\displaystyle f\left ( t \right )=\int_{0}^{\infty }e^{-tx^{2}}\mathrm{d}x=\frac{\sqrt{\pi }}{2\sqrt{t}}\), 在上式中,令 \(t=1\), 则

\[I=f\left ( 1 \right )=\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x=\frac{\sqrt{\pi }}{2} \]

方法5:这种利用伽马函数的方法应该是高数中第一次接触的,出现在同济高数上册第五章最后,不过教材中打了星号,所以多数人都不了解,首先我们引入伽马函数的定义

\[\Gamma \left ( x \right )=\int_{0}^{\infty }t^{x-1}e^{-t}\mathrm{d}t \]

所以,我们令 \(x^2=t\), 有

\[I=\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x=\frac{1}{2}\int_{0}^{\infty }t^{-\frac{1}{2}}e^{-t}\mathrm{d}t=\frac{1}{2}\Gamma \left ( \frac{1}{2} \right )=\frac{\sqrt{\pi }}{2} \]

其中 \(\displaystyle \Gamma \left ( \frac{1}{2} \right )=\sqrt{\pi }\) 可利用余元公式求得,这里不做证明.
方法6: 不难证明,函数 \((1+t)e^{-t}\)\(t=0\) 时达到它的最大值1.因此当 \(t\neq 0\) 时,\((1+t)e^{-t}<1\), 令 \(t=\pm x^{2}\), 即得

\[\left ( 1-x^{2} \right )e^{x^{2}}<1~,~\left ( 1+x^{2} \right )e^{-x^{2}}<1 \]

\[\left ( 1-x^{2} \right )<e^{-x^{2}}<\frac{1}{1+x^{2}}~~~\left ( x>0 \right ) \]

假设限定第一个不等式中的 \(x\) 在(0,1)内变化,而第二个不等式中 \(x\) 则看作是任意的,把上式同 \(n\) 次方,有

\[\left ( 1-x^{2} \right )^{n}<e^{-nx^{2}}~~~\left ( 0<x<1 \right ) \]

\[e^{-nx^{2}}<\frac{1}{\left ( 1+x^{2} \right )^{n}}~~~\left ( x>0 \right ) \]

第一个不等式即从0到1积分,第二个不等式取从0到\(+\infty\)的积分,得

\[\int_{0}^{1}\left ( 1-x^{2} \right )^{n}\mathrm{d}x<\int_{0}^{1}e^{-nx^{2}}\mathrm{d}x<\int_{0}^{\infty }e^{-nx^{2}}\mathrm{d}x<\int_{0}^{\infty }\frac{1}{\left ( 1+x^{2} \right )^{n}}\mathrm{d}x \]

\(\displaystyle \int_{0}^{1}\left ( 1-x^{2} \right )^{n}\mathrm{d}x\) 中,令 \(x=\cos t\), 则

\[\int_{0}^{1}\left ( 1-x^{2} \right )^{n}\mathrm{d}x=\int_{0}^{\frac{\pi }{2}}\sin^{2n+1}t\mathrm{d}t=\frac{\left ( 2n \right )!!}{\left ( 2n+1 \right )!!} \]

\(\displaystyle \int_{0}^{\infty }\frac{1}{\left ( 1+x^{2} \right )^{n}}\mathrm{d}x\) 中,令 \(x=\cot t\), 则

\[\int_{0}^{\infty }\frac{1}{\left ( 1+x^{2} \right )^{n}}\mathrm{d}x=\int_{0}^{\frac{\pi }{2}}\sin^{2n-2}t\mathrm{d}t=\frac{\left ( 2n-3 \right )!!}{\left ( 2n-2 \right )!!}\cdot \frac{\pi }{2} \]

\(\displaystyle \int_{0}^{\infty }e^{-nx^{2}}\mathrm{d}x\) 中,令 \(\displaystyle x=\frac{t}{\sqrt{n}}\), 则

\[\int_{0}^{\infty }e^{-nx^{2}}\mathrm{d}x=\frac{1}{\sqrt{n}} \int_{0}^{\infty }e^{-t^{2}}\mathrm{d}t=\frac{1}{\sqrt{n}}I \]

综上所述

\[\sqrt{n}\cdot \frac{\left ( 2n \right )!!}{\left ( 2n+1 \right )!!}<I<\sqrt{n}\cdot \frac{\left ( 2n-3 \right )!!}{\left ( 2n-2 \right )!!}\cdot \frac{\pi }{2} \]

取平方得

\[\frac{n}{2n+1}\cdot \frac{\left [ \left ( 2n \right )!! \right ]^{2}}{\left ( 2n+1 \right )\left [ \left ( 2n-1 \right )!! \right ]^{2}}<I^2<\frac{n}{2n-1}\cdot \frac{\left [ \left ( 2n-3 \right )!! \right ]^{2}}{\left [ \left ( 2n-2 \right )!! \right ]^{2}}\cdot \left ( \frac{\pi }{2} \right )^{2} \]

根据Wallis公式

\[\frac{\pi }{2}=\lim_{n\rightarrow \infty }\frac{\left [ \left ( 2n \right )!! \right ]^{2}}{\left ( 2n+1 \right )\left [ \left ( 2n-1 \right )!! \right ]^{2}} \]

不等式两边当 $n\rightarrow \infty $ 时的极限都是 \(\dfrac{\pi }{4}\), 所以

\[I^2=\frac{\pi }{4}\Rightarrow I=\frac{\sqrt{\pi }}{2} \]

方法7:当然也可以利用三重积分

\[\begin{align*} &8I^3 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}e^{-x^2 - y^2 - z^2}\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}e^{-x^2 - y^2 - z^2}\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\\ \Rightarrow &8I^3 = 4\pi\int_0^{\infty}\rho^2 e^{-\rho^2}\,\mathrm{d}\rho= 2\pi \int_0^{\infty} e^{-\rho^2}\,\mathrm{d}\rho=2\pi \cdot {I} \Rightarrow 8I^3=2\pi I\Rightarrow I=\frac{\sqrt{\pi }}{2} \end{align*}\]

方法8:注意到

\[n! =\int_0^\infty e^{-\sqrt[n]x} \mathrm{d}x\iff\frac1n! =\int_0^\infty e^{-x^n}\mathrm{d}x\rightarrow\frac12! = \int_0^\infty e^{-x^2}\mathrm{d}x \]

\[\int_0^1\Big(1-\sqrt[n]x\Big)^m\,\mathrm{d}x = \int_0^1\Big(1-\sqrt[m]x\Big)^n\,\mathrm{d}x = \frac1{C_{m+n}^n} = \frac1{C_{m+n}^m} = \frac{m!\,n!}{(m+n)!} \]

所以我们有

\[\frac\pi4 = \int_0^1\sqrt{1-x^2}\,\mathrm{d}x = \frac{\left(\dfrac12!\right)^2}{\left(\dfrac12 + \dfrac12\right)!} =\left(\frac12!\right)^2 \]

所以

\[I=\int_0^\infty e^{-x^2}\mathrm{d}x = \frac12! = \sqrt{\pi\over4} = \frac{\sqrt\pi}2 \]

方法9:利用

\[\int_0^\infty e^{-x^2}\mathrm{d}x=\sqrt \pi \int_0^\infty \frac{1}{\sqrt \pi}e^{-x^2}\mathrm{d}x=\sqrt \pi P(X\geq0) \]

其中

\[X\sim N\left ( 0,\frac{1}{2} \right )~~,~~P(X>0)=P(X>E(X))=\frac{1}{2} \]

所以

\[I=\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x=\frac{\sqrt{\pi }}{2} \]

方法10:利用

\[F(\omega) = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp\left(\frac{-t^2}{2}\right) \exp(- i \omega t) \mathrm{d}t \]

所以

\[F(\omega) = \frac{1}{\pi} \int_{0}^{+\infty} \exp\left(\frac{-t^2}{2}\right) \cos( \omega t) \mathrm{d}t \]

所以我们有

\[F'(\omega) = - \omega F(\omega)\Rightarrow F(\omega) = C \exp\left(\frac{-\omega^2}{2}\right) \]

\[\exp\left(\frac{-x^2}{2}\right) = \int_{-\infty}^{+\infty} F(\omega) \exp( i \omega x) \mathrm{d}\omega \]

可得 \(\displaystyle C = \frac{1}{\sqrt{2\pi}}.\)\(\omega=0\), 有

\[F(0) = C = \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp\left(\frac{-t^2}{2}\right) \mathrm{d}t \]

所以

\[\sqrt{2} \int_{-\infty}^{+\infty} \exp\left(-t^2\right) \mathrm{d}t = \sqrt{2\pi}\Rightarrow I=\frac{\sqrt{\pi }}{2} \]

posted @ 2016-04-25 18:18  Renascence_5  阅读(12838)  评论(1编辑  收藏  举报