视觉里程计01 - ORB特征提取与跟踪
orb特征
概念网上描述的很详细,这里简单说一下
- 采用改进的FAST特征点,在FAST特征点提取的基础上加入多层金字塔来确定不同尺度下的特征点
- 用ID3方法来确定最优特征点
- 采用非极大值抑制去除局部较密集特征点
- 尺度不变性用金字塔来确定,旋转不变性用图像质心的夹角来确定
- 描述子采用BRIEF
总的来说该算法比surf还要快,而且准确率也很不错。
orb特征提取与跟踪代码
主体部分来自高翔的视觉SLAM14讲的代码,在开头加入了摄像头读取的代码替换掉固定的图片演示。这里用双目摄像头来进行匹配,实际上视觉里程计采用单目即可。
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/videoio.hpp>
#include <iostream>
#include "opencv2/features2d/features2d.hpp"
#include <vector>
#include <time.h>
using namespace cv;
using namespace std;
int main()
{
VideoCapture cap1;
VideoCapture cap2;
cap1.open(1);//白色摄像头
cap2.open(2);//黑色摄像头
if (!cap1.isOpened()||!cap2.isOpened())
{
return -1;
}
//将摄像头从640*480改成320*240,速度从200ms提升至50ms
cap1.set(CV_CAP_PROP_FRAME_WIDTH, 320);
cap1.set(CV_CAP_PROP_FRAME_HEIGHT, 240);
cap2.set(CV_CAP_PROP_FRAME_WIDTH, 320);
cap2.set(CV_CAP_PROP_FRAME_HEIGHT, 240);
//namedWindow("Video", 1);
//namedWindow("Video", 2);
//namedWindow("pts", 3);
//Mat frame;
Mat img_1;
Mat img_2;
while (1)
{
cap1 >> img_1;
cap2 >> img_2;
if (!img_1.data || !img_2.data)
{
cout << "error reading images " << endl;
return -1;
}
//初始化
clock_t startTime, endTime;
startTime = clock();
Ptr<ORB> orb = ORB::create(500, 1.2F, 8, 31, 0, 2, ORB::HARRIS_SCORE, 31, 20);//均为默认参数
vector<KeyPoint> keyPoints_1, keyPoints_2;
Mat descriptors_1, descriptors_2;
//orb检测角点
orb->detect(img_1, keyPoints_1);
orb->detect(img_2, keyPoints_2);
if (keyPoints_1.size() == 0 || keyPoints_2.size() == 0)
{
continue;
}
//计算描述子
orb->compute(img_1, keyPoints_1, descriptors_1);
orb->compute(img_2, keyPoints_2, descriptors_2);
//匹配特征点,Hamming距离
vector<DMatch> matches;
BFMatcher matcher(NORM_HAMMING);
matcher.match(descriptors_1, descriptors_2, matches);
//筛选匹配点
double min_dist = matches[0].distance, max_dist = matches[0].distance;
for (int i = 0; i < descriptors_1.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist)
min_dist = dist;
if (dist > max_dist)
max_dist = dist;
}
printf("max: %f\n", max_dist);
printf("min: %f\n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
std::vector< DMatch > good_matches;
for (int i = 0; i < descriptors_1.rows; i++)
{
if (matches[i].distance <= max(2 * min_dist, 30.0))
{
good_matches.push_back(matches[i]);
}
}
endTime = clock();
cout << "Totle Time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC << "s" << endl;
printf("goodmatches number:%d\n", good_matches.size());
//-- 第五步:绘制匹配结果
/*Mat img_match;
Mat img_goodmatch;
drawMatches(img_1, keyPoints_1, img_2, keyPoints_2, matches, img_match);
drawMatches(img_1, keyPoints_1, img_2, keyPoints_2, good_matches, img_goodmatch);
imshow("所有匹配点对", img_match);
imshow("优化后匹配点对", img_goodmatch);
waitKey(1);*/
}
cap1.release();
cap2.release();
return 0;
}