GYM 101502I. Move Between Numbers
I. Move Between Numbers
time limit per test
memory limit per test
input
output
You are given n magical numbers a*1, *a*2, …, *a**n, such that the length of each of these numbers is 20 digits.
You can move from the i**th number to the j**th number, if the number of common digits between a**i and a**j is exactly 17 digits.
The number of common digits between two numbers x and y is computed is follow:
.
Where countX**i is the frequency of the i**th digit in the number x, and countY**i is the frequency of the i**th digit in the number y.
You are given two integers s and e, your task is to find the minimum numbers of moves you need to do, in order to finish at number a**e*starting from number *a**s.
Input
The first line contains an integer T (1 ≤ T ≤ 250), where T is the number of test cases.
The first line of each test case contains three integers n, s, and e (1 ≤ n ≤ 250) (1 ≤ s, e ≤ n), where n is the number of magical numbers, s is the index of the number to start from it, and e is the index of the number to finish at it.
Then n lines follow, giving the magical numbers. All numbers consisting of digits, and with length of 20 digits. Leading zeros are allowed.
Output
For each test case, print a single line containing the minimum numbers of moves you need to do, in order to finish at number a**e starting from number a**s. If there is no answer, print -1.
Example
Copy
1
5 1 5
11111191111191111911
11181111111111818111
11811171817171181111
11111116161111611181
11751717818314111118
output
3
Note
In the first test case, you can move from *a*1 to *a*2, from *a*2 to *a*3, and from *a*3 to *a*5. So, the minimum number of moves is 3 moves.
题意
给出n个20位的数,求第s到第e的最少步数。
能走的条件是这样的: 如果两个数相同数字个数的和为17,那么就能互相到达。例如a1与a2公有17个1,那么可以互相到达,a2与a3公有14个1和3个8,它们的总和为17,则它们也可以互相到达。
解题思路
建图,BFS(dijkstra也行)。
代码
#include<bits/stdc++.h>
using namespace std;
#define maxn 300
#define inf 0x3f3f3f3f
int number1[10],number2[10],flag[maxn];
string str[maxn];
vector<int> v[maxn];
int s,e;
struct node
{
int x,step;
node() {}
node(int a,int b)
{
x=a;
step=b;
}
};
void bfs()
{
memset(flag,0,sizeof(flag));
queue<node> q;
flag[s]=1;
q.push(node(s,0));
while(!q.empty())
{
node now=q.front();
q.pop();
flag[now.x]=1;
if(now.x==e)
{
printf("%d\n",now.step);
return;
}
for(int i=0; i<v[now.x].size(); i++)
{
node next=now;
next.x=v[now.x][i];
if(flag[next.x]) continue;
next.step=now.step+1;
q.push(next);
}
}
printf("-1\n");
}
int main()
{
// freopen("in.txt","r",stdin);
int t;
scanf("%d",&t);
while(t--)
{
int n;
cin>>n>>s>>e;
for(int i=0;i<=n;i++)
v[i].clear();
for(int i=1; i<=n; i++)
cin>>str[i];
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
memset(number1,0,sizeof(number1));
memset(number2,0,sizeof(number2));
for(int k=0; k<20; k++)
{
number1[str[i][k]-'0']++;
number2[str[j][k]-'0']++;
}
int sum=0;
for(int k=0; k<10; k++)
sum+=min(number1[k],number2[k]);
if(sum==17) v[i].push_back(j);
}
}
bfs();
}
return 0;
}