HDU 5794 A Simple Chess (Lucas + dp)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794

多校这题转化一下模型跟cf560E基本一样,可以先做cf上的这个题。

题目让你求一个棋子开始在(1,1),只能像马一样走且往右下方走,不经过坏点,有多少种走法能到达(n,m)点。

比如n=6, m=5 有两个坏点,模型转换 如下图:

转换成简单模型之后,只要把棋子可能经过的坏点存到结构体中,按照x与y从小到大排序。

dp[i]表示从起点到第i个坏点且不经过其他坏点的方案数。

dp[i] = Lucas(x[i], y[i]) - sum(dp[j]*Lucas(x[i]-x[j], y[i]-x[j])) , x[j] <= x[i] && y[j] <= y[i] //到i点所有的路径数目 - 经过其他点的路径数目

那我们把最后一个点也设成坏点,比如dp[final],那么dp[final]就是答案了

  1 //#pragma comment(linker, "/STACK:102400000, 102400000")
  2 #include <algorithm>
  3 #include <iostream>
  4 #include <cstdlib>
  5 #include <cstring>
  6 #include <cstdio>
  7 #include <vector>
  8 #include <cmath>
  9 #include <ctime>
 10 #include <list>
 11 #include <set>
 12 #include <map>
 13 using namespace std;
 14 typedef long long LL;
 15 typedef pair <LL, LL> P;
 16 const int N = 1e2 + 5;
 17 const LL mod = 110119;
 18 struct data {
 19     LL x, y;
 20     bool operator <(const data& cmp) const {
 21         return x == cmp.x ? y < cmp.y : x < cmp.x;
 22     }
 23 }q[N];
 24 LL f[mod + 5]; //阶乘
 25 dp[N];
 26 
 27 LL Pow(LL a , LL n , LL mod) {
 28     LL res = 1;
 29     while(n) {
 30         if(n & 1)
 31             res = res * a % mod;
 32         a = a * a % mod;
 33         n >>= 1;
 34     }
 35     return res;
 36 }
 37 
 38 LL Comb(LL a , LL b , LL mod) {
 39     if(a < b) {
 40         return 0;
 41     }
 42     if(a == b) {
 43         return 1;
 44     }
 45     return (f[a] * Pow(f[a - b]*f[b] % mod , mod - 2 , mod)) % mod; //乘法逆元
 46 }
 47 
 48 LL Lucas(LL n , LL m , LL mod) {
 49     LL ans = 1;
 50     while(m && n && ans) {
 51         ans = (ans * Comb(n % mod , m % mod , mod)) % mod;
 52         n /= mod;
 53         m /= mod;
 54     }
 55     return ans;
 56 }
 57 
 58 bool judge(LL x, LL y) { //判断'马' 能否走到坏点
 59     if(x > y)
 60         swap(x, y);
 61     LL dec = y - x;
 62     if(dec > x || dec*2 > y || (x - dec) % 3 != 0 || (y - dec*2) % 3 != 0 || x - dec != y - dec*2)
 63         return true;
 64     return false;
 65 }
 66 
 67 P get(LL x, LL y) { //得到模型的x和y
 68     P res;
 69     if(x > y) {
 70         LL dec = x - y;
 71         res.first = dec, res.second = 0;
 72         x -= dec * 2, y -= dec;
 73         res.first += x / 3, res.second += y / 3;
 74     } else {
 75         LL dec = y - x;
 76         res.first = 0, res.second = dec;
 77         x -= dec, y -= dec * 2;
 78         res.first += x / 3, res.second += y / 3;
 79     }
 80     return res;
 81 }
 82 
 83 int main()
 84 {
 85     int Case = 1;
 86     LL n, m;
 87     int k;
 88     f[0] = 1;
 89     for(LL i = 1; i <= mod; ++i)
 90         f[i] = f[i - 1] * i % mod;
 91     while(scanf("%lld %lld %d", &n, &m, &k) != EOF) {
 92         n--, m--;
 93         for(int i = 1; i <= k; ++i) {
 94             scanf("%lld %lld", &q[i].x, &q[i].y);
 95             q[i].x--, q[i].y--;
 96         }
 97         printf("Case #%d: ", Case++);
 98         if(judge(n, m)) {
 99             printf("0\n");
100             continue;
101         }
102         P temp = get(n, m);
103         n = temp.first, m = temp.second;
104         int index = 0;
105         for(int i = 1; i <= k; ++i) {
106             if(judge(q[i].x, q[i].y))
107                 continue;
108             temp = get(q[i].x, q[i].y);
109             if(temp.first > n || temp.second > m)
110                 continue;
111             q[++index].x = temp.first, q[index].y = temp.second;
112         }
113         sort(q + 1, q + index + 1);
114         q[++index].x = n, q[index].y = m;
115         memset(dp, 0, sizeof(dp));
116         for(int i = 1; i <= index; ++i) {
117             LL sum = 0;
118             for(int j = 1; j < i; ++j) {
119                 if(q[i].x >= q[j].x && q[i].y >= q[j].y) {
120                     sum = (sum + dp[j]*Lucas(q[i].x - q[j].x - q[j].y + q[i].y, q[i].y - q[j].y, mod) % mod) % mod;
121                 }
122             }
123             dp[i] = ((Lucas(q[i].x + q[i].y, q[i].y, mod) - sum) % mod + mod) % mod;
124         }
125         printf("%lld\n", dp[index]);
126     }
127     return 0;
128 }
View Code

 

posted @ 2016-08-05 17:06  Recoder  阅读(299)  评论(0编辑  收藏  举报