二项式定理习题证明

习题证明

证明:

\[\sum_{k=0}^n (-1)^k\binom{n}{k}^2 = \begin{cases} 0,\text{若 n 是奇数} \\ (-1)^m\binom{2m}{m},\text{若}n = 2m \end{cases} \]

奇数情况显然,考虑偶数情况。

\[\text{令} n = 2m \\ (x-1)^n(x+1)^n = (x^2 - 1)^n \\ \sum_{k=0}^n (-1)^k \binom{n}{k}x^k \sum_{k=0}^n\binom{n}{k}x^k = \sum_{k=0}^{n} (-1)^k \binom{n}{k}x^{2k} \\ \text{由于n次系数相等,可得} \\ \sum_{k=0}^n (-1)^k \binom{n}{k} x^k \binom{n}{n-k} x^{n-k} = (-1)^m \binom{n}{m}x^n \\ \sum_{k=0}^n (-1)^k \binom{n}{k}^2 x^n = (-1)^m \binom{n}{m}x^n \\ \sum_{k=0}^n (-1)^k \binom{n}{k}^2 = (-1)^m \binom{n}{m} \\ \]

证毕。

7.求出:

\[\binom{n}{k} + 3\binom{n}{k-1}+3\binom{n}{k-2}+\binom{n}{k-3} \]

解:

\[\text{原式} = \binom{3}{0}\binom{n}{k} + \binom{3}{1}\binom{n}{k-1}+\binom{3}{2}\binom{n}{k-2} + \binom{3}{3}\binom{n}{k-3} \\ = \sum_{i=0}^k \binom{3}{i}\binom{n}{k-i} \\ = \binom{n+3}{k} \]

posted @ 2021-08-18 09:11  Reanap  阅读(113)  评论(0编辑  收藏  举报