二项式定理习题证明
习题证明
证明:
\[\sum_{k=0}^n (-1)^k\binom{n}{k}^2 = \begin{cases}
0,\text{若 n 是奇数} \\
(-1)^m\binom{2m}{m},\text{若}n = 2m
\end{cases}
\]
奇数情况显然,考虑偶数情况。
\[\text{令} n = 2m \\
(x-1)^n(x+1)^n = (x^2 - 1)^n \\
\sum_{k=0}^n (-1)^k \binom{n}{k}x^k \sum_{k=0}^n\binom{n}{k}x^k = \sum_{k=0}^{n} (-1)^k \binom{n}{k}x^{2k} \\
\text{由于n次系数相等,可得} \\
\sum_{k=0}^n (-1)^k \binom{n}{k} x^k \binom{n}{n-k} x^{n-k} = (-1)^m \binom{n}{m}x^n \\
\sum_{k=0}^n (-1)^k \binom{n}{k}^2 x^n = (-1)^m \binom{n}{m}x^n \\
\sum_{k=0}^n (-1)^k \binom{n}{k}^2 = (-1)^m \binom{n}{m} \\
\]
证毕。
7.求出:
\[\binom{n}{k} + 3\binom{n}{k-1}+3\binom{n}{k-2}+\binom{n}{k-3}
\]
解:
\[\text{原式} = \binom{3}{0}\binom{n}{k} + \binom{3}{1}\binom{n}{k-1}+\binom{3}{2}\binom{n}{k-2} + \binom{3}{3}\binom{n}{k-3} \\
= \sum_{i=0}^k \binom{3}{i}\binom{n}{k-i} \\
= \binom{n+3}{k}
\]