设计数据结构-LRU缓存算法
LRU缓存算法
力扣第 146 题「LRU缓存机制」就是让你设计数据结构:
首先要接收一个
capacity
参数作为缓存的最大容量,然后实现两个 API,一个是put(key, val)
方法存入键值对,另一个是get(key)
方法获取key
对应的val
,如果key
不存在则返回 -1。
get
和put
方法必须都是O(1)
的时间复杂度
要让 put
和 get
方法的时间复杂度为 O(1),我们可以总结出 cache
这个数据结构必要的条件:
cache
中的元素必须有时序,以区分最近使用的和久未使用的数据,当容量满了之后要删除最久未使用的那个元素腾位置。- 我们要在
cache
中快速找某个key
是否已存在并得到对应的val
; - 每次访问
cache
中的某个key
,需要将这个元素变为最近使用的,也就是说cache
要支持在任意位置快速插入和删除元素。
哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表 LinkedHashMap
。
LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:
来逐一分析上面的 3 个条件:
- 如果我们每次默认从链表尾部添加元素,那么显然越靠尾部的元素就是最近使用的,越靠头部的元素就是最久未使用的。
- 对于某一个
key
,我们可以通过哈希表快速定位到链表中的节点,从而取得对应val
。 - 链表显然是支持在任意位置快速插入和删除的,改改指针就行。只不过传统的链表无法按照索引快速访问某一个位置的元素,而这里借助哈希表,可以通过
key
快速映射到任意一个链表节点,然后进行插入和删除。
这里可以通过hashmap的key来快速找到对应的node节点,所以就能快速的插入删除了。
先自己造轮子实现一遍 LRU 算法#
首先,把双链表的节点类写出来:
class Node {
public int key, val;
public Node next, prev;
public Node(int k, int v) {
this.key = k;
this.val = v;
}
}
然后依靠我们的 Node
类型构建一个双链表,实现几个 LRU 算法必须的 API:
class DoubleList {
// 头尾虚节点
private Node head, tail;
// 链表元素数
private int size;
public DoubleList() {
// 初始化双向链表的数据
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.prev = head;
size = 0;
}
// 在链表尾部添加节点 x,时间 O(1)
public void addLast(Node x) {
x.prev = tail.prev;
x.next = tail;
tail.prev.next = x;
tail.prev = x;
size++;
}
// 删除链表中的 x 节点(x 一定存在)
// 由于是双链表且给的是目标 Node 节点,时间 O(1)
public void remove(Node x) {
x.prev.next = x.next;
x.next.prev = x.prev;
size--;
}
// 删除链表中第一个节点,并返回该节点,时间 O(1)
public Node removeFirst() {
if (head.next == tail)
return null;
Node first = head.next;
remove(first);
return first;
}
// 返回链表长度,时间 O(1)
public int size() { return size; }
}
到这里就能回答刚才「为什么必须要用双向链表」的问题了,因为我们需要删除操作。删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持直接查找前驱,保证操作的时间复杂度 O(1)。
有了双向链表的实现,我们只需要在 LRU 算法中把它和哈希表结合起来即可,先搭出代码框架:
class LRUCache {
// key -> Node(key, val)
private HashMap<Integer, Node> map;
// Node(k1, v1) <-> Node(k2, v2)...
private DoubleList cache;
// 最大容量
private int cap;
public LRUCache(int capacity) {
this.cap = capacity;
map = new HashMap<>();
cache = new DoubleList();
}
由于我们要同时维护一个双链表 cache
和一个哈希表 map
,很容易漏掉一些操作,比如说删除某个 key
时,在 cache
中删除了对应的 Node
,但是却忘记在 map
中删除 key
。
解决这种问题的有效方法是:在这两种数据结构之上提供一层抽象 API。
尽量让 LRU 的主方法 get
和 put
避免直接操作 map
和 cache
的细节。我们可以先实现下面几个函数:
/* 将某个 key 提升为最近使用的 */
private void makeRecently(int key) {
Node x = map.get(key);
// 先从链表中删除这个节点
cache.remove(x);
// 重新插到队尾
cache.addLast(x);
}
/* 添加最近使用的元素 */
private void addRecently(int key, int val) {
Node x = new Node(key, val);
// 链表尾部就是最近使用的元素
cache.addLast(x);
// 别忘了在 map 中添加 key 的映射
map.put(key, x);
}
/* 删除某一个 key */
private void deleteKey(int key) {
Node x = map.get(key);
// 从链表中删除
cache.remove(x);
// 从 map 中删除
map.remove(key);
}
/* 删除最久未使用的元素 */
private void removeLeastRecently() {
// 链表头部的第一个元素就是最久未使用的
Node deletedNode = cache.removeFirst();
// 同时别忘了从 map 中删除它的 key
int deletedKey = deletedNode.key;
map.remove(deletedKey);
}
这里就能回答之前的问答题「为什么要在链表中同时存储 key 和 val,而不是只存储 val」,注意 removeLeastRecently
函数中,我们需要用 deletedNode
得到 deletedKey
。
先来实现 LRU 算法的 get
方法:
public int get(int key) {
if (!map.containsKey(key)) {
return -1;
}
// 将该数据提升为最近使用的
makeRecently(key);
return map.get(key).val;
}
put
方法稍微复杂一些,我们先来画个图搞清楚它的逻辑:
写出 put
方法的代码:
public void put(int key, int val) {
if (map.containsKey(key)) {
// 删除旧的数据
deleteKey(key);
// 新插入的数据为最近使用的数据
addRecently(key, val);
return;
}
if (cap == cache.size()) {
// 删除最久未使用的元素
removeLeastRecently();
}
// 添加为最近使用的元素
addRecently(key, val);
}
最后用 Java 的内置类型 `LinkedHashMap` 来实现 LRU 算法,逻辑和之前完全一致:
class LRUCache {
int cap;
LinkedHashMap<Integer, Integer> cache = new LinkedHashMap<>();
public LRUCache(int capacity) {
this.cap = capacity;
}
public int get(int key) {
if (!cache.containsKey(key)) {
return -1;
}
// 将 key 变为最近使用
makeRecently(key);
return cache.get(key);
}
public void put(int key, int val) {
if (cache.containsKey(key)) {
// 修改 key 的值
cache.put(key, val);
// 将 key 变为最近使用
makeRecently(key);
return;
}
if (cache.size() >= this.cap) {
// 链表头部就是最久未使用的 key
int oldestKey = cache.keySet().iterator().next();
cache.remove(oldestKey);
}
// 将新的 key 添加链表尾部
cache.put(key, val);
}
private void makeRecently(int key) {
int val = cache.get(key);
// 删除 key,重新插入到队尾
cache.remove(key);
cache.put(key, val);
}
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~