Real-Ying

2017年5月11日 #

Ng第十二课:支持向量机(Support Vector Machines)(一)

摘要: 1 目录 支持向量机基本上是最好的有监督学习算法了,从logistic回归出发,引出了SVM,揭示模型间的联系,过渡自然。 2 重新审视logistic回归 Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特征的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此, 阅读全文

posted @ 2017-05-11 15:49 Real-Ying 阅读(400) 评论(0) 推荐(0) 编辑

Ng第十一课:机器学习系统的设计(Machine Learning System Design)

摘要: 11.1 首先要做什么 11.2 误差分析 11.3 类偏斜的误差度量 11.4 查全率和查准率之间的权衡 11.5 机器学习的数据 11.1 首先要做什么 在接下来的视频将谈到机器学习系统的设计。这些视频将谈及在设计复杂的机器学习系统时,将遇到的主要问题。同时会试着给出一些关于如何巧妙构建一个复杂 阅读全文

posted @ 2017-05-11 13:03 Real-Ying 阅读(546) 评论(0) 推荐(0) 编辑

Ng第十课:应用机器学习的建议(Advice for Applying Machine Learning)

摘要: 10.1 决定下一步做什么 10.2 评估一个假设 10.3 模型选择和交叉验证集 10.4 诊断偏差和方差 10.5 归一化和偏差/方差 10.6 学习曲线 10.7 决定下一步做什么 10.1 决定下一步做什么 到目前为止,我们已经介绍了许多不同的学习算法,如果你一直跟着这些视频的进度学习,你会 阅读全文

posted @ 2017-05-11 10:58 Real-Ying 阅读(208) 评论(0) 推荐(0) 编辑

导航