Real-Ying

SLAM

|__all together ship

|__SLAM__

                 |__Graph SLAM__

                                             |__完成约束

                                             |__完成Graph SLAM__

                                             |                                   |__完成约束(格子)

                                             |                                   |__加入地标         

                                             |                                                    

                                             |__ Ω和§

                                             |            |__编程(Init_pos,move1,move2)

                                             |                                                             |__加入检测(加入每次测量Z0,Z1,Z2)

                                             |__引入噪音

                                             |__完整的SLAM编程

PID:P的主要功能是让误差最小,因为转向角正比于误差。D使用得当能避免超调。系统漂移与偏置最好用I解决。

 

是时候了,put all together to make a system,这个系统采用车辆模型,并且使用了之前的robot类,得到连续空间里的最短路径

 

steering_noise = 0.1
distance_noise = 0.03
measurement_noise = 0.3

class robot:
     def __init__(self,length = 0.5):
          self.x = 0.0
          self.y = 0.0
          self.orientation = 0.0
          self.length = length
          self.steering_noise = 0.0
          self.distance_noise = 0.0
          self.measurement_noise = 0.0
          self.num_collisions = 0
          self.num_steps = 0

     def set(self,new_x,new_y,new_orientation):
           self_x = float(new_x)
           self_y = float(new_y)
           self_orientation = float(new_orientation) % (2.0*pi)

     def set_noise(self,new_s_noise,new_d_noise,new_m_noise):
           self.steering_noise = float(new_s_noise)
           self.distance_noise = float(new_d_noise)
           self.measurement_noise = float(new_m_noise)

     def check_collisions(self,grid):    #检查是否与网格碰撞
           for i in range(len(grid)):
                for j in range(len(grid[0])):
                     if grid[i][j] == 1:
                         dist = sqrt((self.x - float(i))**2 +
                                        (self.y - float(j) )**2)
                         if dist < 0.5:
                             num_collisions+=1
                         return False              
           return True

     def check_goal(self,goal,threshold = 1.0):    #检查是否到达目标(threshold阀值)
           dist = sqrt((float(i) - self.x)**2 +
                           (float(j) - self.y)**2 )
           return goal < threshold

     def move(self,grid,steering,distance
                    tolerance = 0.001,max_steering_angle = pi/4.0):
           if steering > max_steering_angle:
               steering = max_steering_angle
           if steering < -max_steering_angle:
                steering = -max_steering_angle         
           if distance < 0.0:
              distance = 0.0
     
           # make a new copy
           res = robot()
           res.length = self.length
           res.steering_noise = self.steering_noise
           res.distance_noise = self.distance_noise
           res.measurement_noise = self.measurement_noise
           res.num_collisions = self.num_collisions
           res.num.step = self.num_step + 1
     
           #应用 noise
           steering2 = random.guass(steering,self.steering_noise)
           distance2 = random.guass(distance,self.distance_noise)

           #执行motion
           turn = tan(steering2)*distance2 / res.length
           if abs(turn) < tolerance:
              res.x = self.x + (distance2*cos(self.orientation))
              res.y = self.y + (distance2*sin(self.orientation))
              res.orientation = (self.orientation + turn) % (2.0*pi)
           else:   
              radius = distance2 / turn
              cx = self.x-(sin(self.orientation) * radius)
              cy = self.x+(cos(self.orientation) * radius)
              res.orientation = (self.orientation + turn) % (2*pi)
              res.x = cx +(sin(res.orientation) * radius)
              res.y = cy - (cos(res.orientation) * radius)
          return res

     def sense(self):
           return [random.guass(self.x,self.measurement_noise),
                      random.guass(self.y,self.measurement_noise)]  

     def measurement_prob(self, measurement):
           error_x = measurement[0] - self.x
           error_y = measurement[1] - self.y 
           error = exp(- (error_x ** 2) / (self.measurement_noise ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2))       
           error*= exp(- (error_y ** 2) / (self.measurement_noise ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2)) 
     return error

     def __repr__(self):
         return '[x=%.5s y=%.5s orient=%.5s]' % (self.x,self.y,self.orientation)
 

#输入数据和参数
grid = [[0, 1, 0, 0, 0, 0],
           [0, 1, 0, 1, 1, 0],
           [0, 1, 0, 1, 0, 0],
           [0, 0, 0, 1, 0, 1],
           [0, 1, 0, 1, 0, 0]]
init = [0,0]
goal = [len(gird) - 1,len(grid[0])-1]

myrobot = robot()
myrobot.set_noise(steering_noise,distance_noise,measurement_noise)

while not myrobot.check_goal(goal):
    theta = atan2(goal[1] - myrobot.y,goal[0] - myrobot.x) -myrobot.orientation
    myrobot = myrobot.move(grib,theta,0.1)
if not myrobot.check_collision(grib):
    print ####Collision####
          

 

main()会调用A*、路径平滑算法和在run里面的控制器,控制器里有粒子滤波算法。这里会有一个循环来计算轨迹误差CTE,只用了PD

 

theta和P(x,y)是粒子滤波器输出的定位,cte是误差,U是行驶的路程可由点积求出,然后求的小u是用分母归一化后的结果,只要大于1就说明超过了线段,到了下一个线段(每一小步的线段)。CTE同样方式得出。然后程序化这些数学公式,这里设置了一个index变量,当U超过1时,index就要加1,以防超过线段,下面的程序输出一段有效的,不会碰撞的路径,返回值有是否成功、碰撞次数、步数。有时候也会极少发生碰撞,因为障碍物较多,系统噪音的影响。

from math import *
import random

steering_noise    = 0.1
distance_noise    = 0.03
measurement_noise = 0.3

#------------------------------------------------
#
# this is the plan class 
class plan:
    # init:creates an empty plan
    def __init__(self, grid, init, goal, cost = 1):
        self.cost = cost
        self.grid = grid
        self.init = init
        self.goal = goal
        self.make_heuristic(grid, goal, self.cost)
        self.path = []
        self.spath = []

    #-------------------------------------------------------
    # make heuristic function for a grid
    def make_heuristic(self, grid, goal, cost):
        self.heuristic = [[0 for row in range(len(grid[0]))] 
                          for col in range(len(grid))]
        for i in range(len(self.grid)):    
            for j in range(len(self.grid[0])):
                self.heuristic[i][j] = abs(i - self.goal[0]) + \
                    abs(j - self.goal[1])

    #--------------------------------------------------------
    # A* for searching a path to the goal
    def astar(self):
        if self.heuristic == []:
            raise ValueError, "Heuristic must be defined to run A*"

        # internal motion parameters
        delta = [[-1,  0], # go up
                 [ 0,  -1], # go left
                 [ 1,  0], # go down
                 [ 0,  1]] # do right


        # open list elements are of the type: [f, g, h, x, y]
        closed = [[0 for row in range(len(self.grid[0]))] 
                  for col in range(len(self.grid))]
        action = [[0 for row in range(len(self.grid[0]))] 
                  for col in range(len(self.grid))]

        closed[self.init[0]][self.init[1]] = 1


        x = self.init[0]
        y = self.init[1]
        h = self.heuristic[x][y]
        g = 0
        f = g + h

        open = [[f, g, h, x, y]]

        found  = False # flag that is set when search complete
        resign = False # flag set if we can't find expand
        count  = 0

        while not found and not resign:
            # check if we still have elements on the open list
            if len(open) == 0:
                resign = True
                print '###### Search terminated without success'
            else:
                # remove node from list
                open.sort()
                open.reverse()
                next = open.pop()
                x = next[3]
                y = next[4]
                g = next[1]

            # check if we are done
            if x == goal[0] and y == goal[1]:
                found = True
                # print '###### A* search successful'
            else:
                # expand winning element and add to new open list
                for i in range(len(delta)):
                    x2 = x + delta[i][0]
                    y2 = y + delta[i][1]
                    if x2 >= 0 and x2 < len(self.grid) and y2 >= 0 \
                            and y2 < len(self.grid[0]):
                        if closed[x2][y2] == 0 and self.grid[x2][y2] == 0:
                            g2 = g + self.cost
                            h2 = self.heuristic[x2][y2]
                            f2 = g2 + h2
                            open.append([f2, g2, h2, x2, y2])
                            closed[x2][y2] = 1
                            action[x2][y2] = i

            count += 1

        # extract the path
        invpath = []
        x = self.goal[0]
        y = self.goal[1]
        invpath.append([x, y])
        while x != self.init[0] or y != self.init[1]:
            x2 = x - delta[action[x][y]][0]
            y2 = y - delta[action[x][y]][1]
            x = x2
            y = y2
            invpath.append([x, y])

        self.path = []
        for i in range(len(invpath)):
            self.path.append(invpath[len(invpath) - 1 - i])


    # -----------------------------------------------------
    # this is the smoothing function
    def smooth(self, weight_data = 0.1, weight_smooth = 0.1, 
               tolerance = 0.000001):

        if self.path == []:
            raise ValueError, "Run A* first before smoothing path"

        self.spath = [[0 for row in range(len(self.path[0]))] \
                           for col in range(len(self.path))]
        for i in range(len(self.path)):
            for j in range(len(self.path[0])):
                self.spath[i][j] = self.path[i][j]

        change = tolerance
        while change >= tolerance:
            change = 0.0
            for i in range(1, len(self.path)-1):
                for j in range(len(self.path[0])):
                    aux = self.spath[i][j]
                    
                    self.spath[i][j] += weight_data * \
                        (self.path[i][j] - self.spath[i][j])
                    
                    self.spath[i][j] += weight_smooth * \
                        (self.spath[i-1][j] + self.spath[i+1][j] 
                         - (2.0 * self.spath[i][j]))
                    if i >= 2:
                        self.spath[i][j] += 0.5 * weight_smooth * \
                            (2.0 * self.spath[i-1][j] - self.spath[i-2][j] 
                             - self.spath[i][j])
                    if i <= len(self.path) - 3:
                        self.spath[i][j] += 0.5 * weight_smooth * \
                            (2.0 * self.spath[i+1][j] - self.spath[i+2][j] 
                             - self.spath[i][j])
                
            change += abs(aux - self.spath[i][j])
            
                
# ------------------------------------------------
# 
# this is the robot class
class robot:
    # init: creates robot and initializes location/orientation to 0, 0, 0
    def __init__(self, length = 0.5):
        self.x = 0.0
        self.y = 0.0
        self.orientation = 0.0
        self.length = length
        self.steering_noise    = 0.0
        self.distance_noise    = 0.0
        self.measurement_noise = 0.0
        self.num_collisions    = 0
        self.num_steps         = 0
        
    # set: sets a robot coordinate
    def set(self, new_x, new_y, new_orientation):

        self.x = float(new_x)
        self.y = float(new_y)
        self.orientation = float(new_orientation) % (2.0 * pi)

    # set_noise: sets the noise parameters
    def set_noise(self, new_s_noise, new_d_noise, new_m_noise):
        # makes it possible to change the noise parameters
        # this is often useful in particle filters
        self.steering_noise     = float(new_s_noise)
        self.distance_noise    = float(new_d_noise)
        self.measurement_noise = float(new_m_noise)

   
    # check: checks of the robot pose collides with an obstacle, or is too far outside the plane
    def check_collision(self, grid):
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if grid[i][j] == 1:
                    dist = sqrt((self.x - float(i)) ** 2 + 
                                (self.y - float(j)) ** 2)
                    if dist < 0.5:
                        self.num_collisions += 1
                        return False
        return True
        
    def check_goal(self, goal, threshold = 1.0):
        dist =  sqrt((float(goal[0]) - self.x) ** 2 + (float(goal[1]) - self.y) ** 2)
        return dist < threshold
        
    # move: steering = front wheel steering angle, limited by max_steering_angle
    #       distance = total distance driven, most be non-negative
    def move(self, grid, steering, distance, 
             tolerance = 0.001, max_steering_angle = pi / 4.0):
        if steering > max_steering_angle:
            steering = max_steering_angle
        if steering < -max_steering_angle:
            steering = -max_steering_angle
        if distance < 0.0:
            distance = 0.0
            
        # make a new copy
        res = robot()
        res.length            = self.length
        res.steering_noise    = self.steering_noise
        res.distance_noise    = self.distance_noise
        res.measurement_noise = self.measurement_noise
        res.num_collisions    = self.num_collisions
        res.num_steps         = self.num_steps + 1

        # apply noise
        steering2 = random.gauss(steering, self.steering_noise)
        distance2 = random.gauss(distance, self.distance_noise)

        # Execute motion
        turn = tan(steering2) * distance2 / res.length

        if abs(turn) < tolerance:
            # approximate by straight line motion
            res.x = self.x + (distance2 * cos(self.orientation))
            res.y = self.y + (distance2 * sin(self.orientation))
            res.orientation = (self.orientation + turn) % (2.0 * pi)
        else:
            # approximate bicycle model for motion
            radius = distance2 / turn
            cx = self.x - (sin(self.orientation) * radius)
            cy = self.y + (cos(self.orientation) * radius)
            res.orientation = (self.orientation + turn) % (2.0 * pi)
            res.x = cx + (sin(res.orientation) * radius)
            res.y = cy - (cos(res.orientation) * radius)

        # check for collision
        # res.check_collision(grid)
        return res

  
    # sense: 
    def sense(self):
        return [random.gauss(self.x, self.measurement_noise),
                random.gauss(self.y, self.measurement_noise)]

  
    # measurement_prob: computes the probability of a measurement
    def measurement_prob(self, measurement):
        # compute errors
        error_x = measurement[0] - self.x
        error_y = measurement[1] - self.y

        # calculate Gaussian
        error = exp(- (error_x ** 2) / (self.measurement_noise ** 2) / 2.0) \
            / sqrt(2.0 * pi * (self.measurement_noise ** 2))
        error *= exp(- (error_y ** 2) / (self.measurement_noise ** 2) / 2.0) \
            / sqrt(2.0 * pi * (self.measurement_noise ** 2))
        
        return error

    def __repr__(self):
        # return '[x=%.5f y=%.5f orient=%.5f]'  % (self.x, self.y, self.orientation)
        return '[%.5f, %.5f]'  % (self.x, self.y)

# ----------------------------------------------------------------
# 
# this is the particle filter class
class particles:
    # init: creates particle set with given initial position
    def __init__(self, x, y, theta, 
                 steering_noise, distance_noise, measurement_noise, N = 100):
        self.N = N
        self.steering_noise    = steering_noise
        self.distance_noise    = distance_noise
        self.measurement_noise = measurement_noise
        
        self.data = []
        for i in range(self.N):
            r = robot()
            r.set(x, y, theta)
            r.set_noise(steering_noise, distance_noise, measurement_noise)
            self.data.append(r)
            
    # extract position from a particle set
    def get_position(self):
        x = 0.0
        y = 0.0
        orientation = 0.0

        for i in range(self.N):
            x += self.data[i].x
            y += self.data[i].y
            # orientation is tricky because it is cyclic. By normalizing
            # around the first particle we are somewhat more robust to
            # the 0=2pi problem
            orientation += (((self.data[i].orientation
                              - self.data[0].orientation + pi) % (2.0 * pi)) 
                            + self.data[0].orientation - pi)
        return [x / self.N, y / self.N, orientation / self.N]

    # motion of the particles
    def move(self, grid, steer, speed):
        newdata = []

        for i in range(self.N):
            r = self.data[i].move(grid, steer, speed)
            newdata.append(r)
        self.data = newdata

    # sensing and resampling
    def sense(self, Z):
        w = []
        for i in range(self.N):
            w.append(self.data[i].measurement_prob(Z))

        # resampling (注意这是浅拷贝)
        p3 = []
        index = int(random.random() * self.N)
        beta = 0.0
        mw = max(w)

        for i in range(self.N):
            beta += random.random() * 2.0 * mw
            while beta > w[index]:
                beta -= w[index]
                index = (index + 1) % self.N
            p3.append(self.data[index])
        self.data = p3

    
# --------------------------------------------------
# run:  runs control program for the robot
def run(grid, goal, spath, params, printflag = False, speed = 0.1, timeout = 1000):

    myrobot = robot()
    myrobot.set(0., 0., 0.)
    myrobot.set_noise(steering_noise, distance_noise, measurement_noise)
    filter = particles(myrobot.x, myrobot.y, myrobot.orientation,
                       steering_noise, distance_noise, measurement_noise)

    cte  = 0.0
    err  = 0.0
    N    = 0

    index = 0 # index into the path
    
    while not myrobot.check_goal(goal) and N < timeout:

        diff_cte = - cte

        # compute the CTE

        # start with the present robot estimate
        estimate = filter.get_position()
        
#-------------------------------------------------- # some basic vector calculations
dx = spath[index+1][0] ­ spath[index][0]
dy = spath[index+1][1] ­ spath[index][1]
drx = estimate[0] ­ spath[index][0]
dry = estimate[1] ­ spath[index][1]
# u is the robot estimate projected into the path segment
u = (drx * dx + dry * dy)/(dx * dx + dy * dy)
#the cte is the estimate projected onto the normal of the path segment
cte = (dry * dx ­ drx * dy)/(dx * dx + dy * dy)
if u > 1:
index += 1
# ---------------------------------------- diff_cte += cte steer = - params[0] * cte - params[1] * diff_cte myrobot = myrobot.move(grid, steer, speed) filter.move(grid, steer, speed) Z = myrobot.sense() filter.sense(Z) if not myrobot.check_collision(grid): print '##### Collision ####' err += (cte ** 2) N += 1 if printflag: print myrobot, cte, index, u return [myrobot.check_goal(goal), myrobot.num_collisions, myrobot.num_steps] # ------------------------------------------------------------------- # # this is our main routine def main(grid, init, goal, steering_noise, distance_noise, measurement_noise, weight_data, weight_smooth, p_gain, d_gain): path = plan(grid, init, goal) path.astar() path.smooth(weight_data, weight_smooth) return run(grid, goal, path.spath, [p_gain, d_gain]) # ------------------------------------------------ # # input data and parameters grid = [[0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 1, 0, 1, 0, 0]] init = [0, 0] goal = [len(grid)-1, len(grid[0])-1] #以下这些参数可以调着玩,特别是p、d的权重,用优化函数可能得不到返回,自己尝试出好的值 steering_noise = 0.1 distance_noise = 0.03 measurement_noise = 0.3 weight_data = 0.1 weight_smooth = 0.2 p_gain = 2.0 d_gain = 6.0 print main(grid, init, goal, steering_noise, distance_noise, measurement_noise, weight_data, weight_smooth, p_gain, d_gain) #---------------------------------------- # 参数优化 def twiddle(init_params): n_params = len(init_params) dparams = [1.0 for row in range(n_params)] params = [0.0 for row in range(n_params)] K = 10 for i in range(n_params): params[i] = init_params[i] best_error = 0.0; for k in range(K): ret = main(grid, init, goal, steering_noise, distance_noise, measurement_noise, params[0], params[1], params[2], params[3]) if ret[0]: best_error += ret[1] * 100 + ret[2] else: best_error += 99999 best_error = float(best_error) / float(k+1) print best_error n = 0 while sum(dparams) > 0.0000001: for i in range(len(params)): params[i] += dparams[i] err = 0 for k in range(K): ret = main(grid, init, goal, steering_noise, distance_noise, measurement_noise, params[0], params[1], params[2], params[3], best_error) if ret[0]: err += ret[1] * 100 + ret[2] else: err += 99999 print float(err) / float(k+1) if err < best_error: best_error = float(err) / float(k+1) dparams[i] *= 1.1 else: params[i] -= 2.0 * dparams[i] err = 0 for k in range(K): ret = main(grid, init, goal, steering_noise, distance_noise, measurement_noise, params[0], params[1], params[2], params[3], best_error) if ret[0]: err += ret[1] * 100 + ret[2] else: err += 99999 print float(err) / float(k+1) if err < best_error: best_error = float(err) / float(k+1) dparams[i] *= 1.1 else: params[i] += dparams[i] dparams[i] *= 0.5 n += 1 print 'Twiddle #', n, params, ' -> ', best_error print ' ' return params #twiddle([weight_data, weight_smooth, p_gain, d_gain])

 

SLAM是一种建图方法,是同时定位和建图的总称。

当移动机器人在环境中建图时,因为移动的不确定性迫使我们去定位。比如一个机器人从X0(0,0)沿x轴运动10个单位到X1,不能以X1=X0+10去表示移动后机器人的位置,而是用关于两个参数的高斯分布来表示,y方向同样。这两个高斯函数就成了约束条件,Graph SLAM就是利用一系列这样的约束来定义概率。(这是相对约束)

一个机器人的移动过程,每个点X1~X4都是(x,y,orientation)的三维向量,每个点时刻都会测量一次与地标的距离(测量结果z用高斯表示),这样会有三个约束出现:初始位置约束、相对约束(两点之间的相对位置)、相对地标位置约束。

 

完成Graph SLAM

为了完成Graph SLAM,一个矩阵和一个向量被引入,要把所有的姿势坐标和地标都填到这个二维矩阵里,

 

x0—>x1  5,那么x0+5=x1,x0+(-1*x1)=-5,就是第一行。然后反过来x1+(-1*x0)=5,就是第二行。

举一反三,倒回,x2—>x1 -4 ,x1-4=x2,x2+(-x1)=-4,这就是第三行。然后x1+(-x2)=4,加到第二行,最后结果如图,以此类推填充矩阵。

同理填入地标格子,没测地标的检测点空(x与L对应的空格),临近的两个检测点才测互相的空格。

 Ω和§

 然后将这两个矩阵经过简单的数学运算就能找到所有世界坐标的最佳解,即最好估计值μ。

这就是SLAM Graph方法,只要每次看到约束的时候就把这些数字填到这两个矩阵当中,然后只需一个简单的运算,机器人的位置最佳坐标就出来了。

  1 # -----------
  2 # 写一个函数doit, 输入初始机器人的位置、move1、move2 
  3 # 这个函数能计算出Omega矩阵和Xi向量,并且返回mu向量
  4  
  5 from math import *
  6 import random
  7 
  8 
  9 # ------------------------------------------------
 10 # 
 11 # 这是一个矩阵的类,它能让收集约束和计算结果更容易,
 12 # 尽管效率低下
 13 
 14 class matrix:
 15     # 包含矩阵基本运算的类
 16 
 17     # ------------
 18     # 初始化
 19 
 20     def __init__(self, value = [[]]):
 21         self.value = value
 22         self.dimx  = len(value)
 23         self.dimy  = len(value[0])
 24         if value == [[]]:
 25             self.dimx = 0
 26 
 27     # ------------
 28     # 设置矩阵(向量?)尺寸并使每个元素为0
 29 
 30     def zero(self, dimx, dimy = 0):
 31         if dimy == 0:
 32             dimy = dimx
 33         # check if valid dimensions
 34         if dimx < 1 or dimy < 1:
 35             raise ValueError, "Invalid size of matrix"
 36         else:
 37             self.dimx  = dimx
 38             self.dimy  = dimy
 39             self.value = [[0.0 for row in range(dimy)] for col in range(dimx)]
 40 
 41     # ------------
 42     # 设置等长宽的矩阵并全设1
 43 
 44     def identity(self, dim):
 45         # check if valid dimension
 46         if dim < 1:
 47             raise ValueError, "Invalid size of matrix"
 48         else:
 49             self.dimx  = dim
 50             self.dimy  = dim
 51             self.value = [[0.0 for row in range(dim)] for col in range(dim)]
 52             for i in range(dim):
 53                 self.value[i][i] = 1.0
 54  
 55     # ------------
 56     # 输出矩阵值
 57 
 58     def show(self, txt = ''):
 59         for i in range(len(self.value)):
 60             print txt + '['+ ', '.join('%.3f'%x for x in self.value[i]) + ']' 
 61         print ' '
 62 
 63     # ------------
 64     # 同规模的两矩阵相加
 65 
 66     def __add__(self, other):
 67         # check if correct dimensions
 68         if self.dimx != other.dimx or self.dimx != other.dimx:
 69             raise ValueError, "Matrices must be of equal dimension to add"
 70         else:
 71             # add if correct dimensions
 72             res = matrix()
 73             res.zero(self.dimx, self.dimy)
 74             for i in range(self.dimx):
 75                 for j in range(self.dimy):
 76                     res.value[i][j] = self.value[i][j] + other.value[i][j]
 77             return res
 78 
 79     # ------------
 80     # 同规模矩阵相减
 81 
 82     def __sub__(self, other):
 83         # check if correct dimensions
 84         if self.dimx != other.dimx or self.dimx != other.dimx:
 85             raise ValueError, "Matrices must be of equal dimension to subtract"
 86         else:
 87             # subtract if correct dimensions
 88             res = matrix()
 89             res.zero(self.dimx, self.dimy)
 90             for i in range(self.dimx):
 91                 for j in range(self.dimy):
 92                     res.value[i][j] = self.value[i][j] - other.value[i][j]
 93             return res
 94 
 95     # ------------
 96     # 等规模矩阵相乘
 97 
 98     def __mul__(self, other):
 99         # check if correct dimensions
100         if self.dimy != other.dimx:
101             raise ValueError, "Matrices must be m*n and n*p to multiply"
102         else:
103             # multiply if correct dimensions
104             res = matrix()
105             res.zero(self.dimx, other.dimy)
106             for i in range(self.dimx):
107                 for j in range(other.dimy):
108                     for k in range(self.dimy):
109                         res.value[i][j] += self.value[i][k] * other.value[k][j]
110         return res
111 
112     # ------------
113     # 矩阵转置
114 
115     def transpose(self):
116         # compute transpose
117         res = matrix()
118         res.zero(self.dimy, self.dimx)
119         for i in range(self.dimx):
120             for j in range(self.dimy):
121                 res.value[j][i] = self.value[i][j]
122         return res
123 
124 
125     # ------------
126     # 从现有的矩阵元素中提取一个新的矩阵
127     # 例如 ([0, 2], [0, 2, 3])即提取第0行和第3行的第0、2、3个元素
128 
129     def take(self, list1, list2 = []):
130         if list2 == []:
131             list2 = list1
132         if len(list1) > self.dimx or len(list2) > self.dimy:
133             raise ValueError, "list invalid in take()"
134 
135         res = matrix()
136         res.zero(len(list1), len(list2))
137         for i in range(len(list1)):
138             for j in range(len(list2)):
139                 res.value[i][j] = self.value[list1[i]][list2[j]]
140         return res
141 
142     # ------------
143     # 从现有的矩阵元素中提取扩张一个新的矩阵
144     # 例如 (3, 5, [0, 2], [0, 2, 3]),结果是3行5列,结果中第1/3行
145     # 的1、3、4列是初始矩阵按顺序分布,其余0补充
146     def expand(self, dimx, dimy, list1, list2 = []):
147         if list2 == []:
148             list2 = list1
149         if len(list1) > self.dimx or len(list2) > self.dimy:
150             raise ValueError, "list invalid in expand()"
151 
152         res = matrix()
153         res.zero(dimx, dimy)
154         for i in range(len(list1)):
155             for j in range(len(list2)):
156                 res.value[list1[i]][list2[j]] = self.value[i][j]
157         return res
158    
159     # ------------
160     # 计算正定矩阵的上三角Cholesky分解
161     def Cholesky(self, ztol= 1.0e-5):
162         res = matrix()
163         res.zero(self.dimx, self.dimx)
164 
165         for i in range(self.dimx):
166             S = sum([(res.value[k][i])**2 for k in range(i)])
167             d = self.value[i][i] - S
168             if abs(d) < ztol:
169                 res.value[i][i] = 0.0
170             else: 
171                 if d < 0.0:
172                     raise ValueError, "Matrix not positive-definite"
173                 res.value[i][i] = sqrt(d)
174             for j in range(i+1, self.dimx):
175                 S = sum([res.value[k][i] * res.value[k][j] for k in range(i)])
176                 if abs(S) < ztol:
177                     S = 0.0
178                 res.value[i][j] = (self.value[i][j] - S)/res.value[i][i]
179         return res 
180 
181     # ------------
182     # 计算矩阵的Cholesky上三角分解矩阵的逆矩阵
183 
184     def CholeskyInverse(self):
185         res = matrix()
186         res.zero(self.dimx, self.dimx)
187 
188     # Backward step for inverse.
189         for j in reversed(range(self.dimx)):
190             tjj = self.value[j][j]
191             S = sum([self.value[j][k]*res.value[j][k] for k in range(j+1, self.dimx)])
192             res.value[j][j] = 1.0/ tjj**2 - S/ tjj
193             for i in reversed(range(j)):
194                 res.value[j][i] = res.value[i][j] = \
195                     -sum([self.value[i][k]*res.value[k][j] for k in \
196                               range(i+1,self.dimx)])/self.value[i][i]
197         return res
198 
199     # ------------
200     # 计算返回矩形矩阵的逆置
201 
202     def inverse(self):
203        aux = self.Cholesky()
204        res = aux.CholeskyInverse()
205        return res
206 
207     #--------------
208     #打印矩阵
209 
210     def __repr__(self):
211        return repr(self.value) 
212 
213 
214 # ################################
215 """下面这个粒子调用(-3,5,3),-3初始位置,5 move1,3 move2
216 应返回向量结果[[-3.0],
217              [2.0],
218              [5.0]]
219 """
220 def doit(initial_pos, move1, move2):
221     Omega = [[1,0,0],[0,0,0],[0,0,0]]      #x0=-3
222     Xi = [[initial_pos],[0],[0]]
223 
224     Omega += [[1,­-1,0],[-­1,1,0],[0,0,0]]   #x0+5=x1
225     Xi += [[­-move1],[move1],[0]]
226 
227     Omega += [[0,0,0],[0,1,­-1],[0,­-1,1]]   #x1+3=x2
228     Xi += [[0],[­-move2],[move2]]
229     
230 Omega.show('Omegs: ')
231 Xi.show('Xi: ') 232 mu = Omega.inverse()*Xi 233 mu.show('mu: ')
234 235 return mu 236 237 doit(-3, 5, 3)

 

加入一个地标,从3*3变成4*4,代码添加

Omega = Omega.expand(4, 4, [0,1,2], [0,1,2])
Xi = Xi.expand(4, 1, [0, 1, 2], [0])

Omega += matrix([[1., 0., 0., ­-1.],[0., 0., 0., 0.],[0., 0., 0.,0.],[­ -1., 0., 0., 1.]])
Xi += matrix([[-­Z0], [0.], [0.], [Z0]])

Omega += matrix([[0., 0., 0., 0.],[0., 1., 0., ­-1.],[0., 0., 0.,0.],[0.,­-1., 0., 1.]])
Xi += matrix([[0.], [­-Z1], [0.], [Z1]])

Omega += matrix([[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 1.,-1.],[0.,0., ­-1., 1.]])
Xi += matrix([[0.], [0.], [­-Z2], [Z2]])

 

引入噪音

噪音使得测量地标距离不精准, 假设有两个机器人位置,第二个在第一个右边10,并伴有高斯噪音,情况和高斯噪音如下:

 

假设最后一个点测量的地标距离是1(本来是2),总概率是两者的乘积,最后结果类似 x1/σ+x0/σ=10/σ ,1/σ代表信度,要想这个乘积更大,几个技巧:1.去掉常数;2.如果能把乘积编程加法,去掉指数3.甚至可以去掉-1/2

修改代码,使得最后的测量具有非常高的置信度,系数为5.您应该得到[3,2.179,5.714,6.821]作为答案。 从这个结果中可以看出,最后一点与地标的差异非常接近1.0的测量差异,因为与其他测量和运动相比,这个置信度相对较高。

Omega += matrix([[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0.,5., ­-5.],[0., 0., ­-5., 5.]])
Xi += matrix([[0.], [0.], [­-Z2*5], [Z2*5]])

 

完成SLAM编程

每一时刻都有一组约束(初始位置,移动或者地标测量),把他们装入矩阵Omega和向量Xi,两个thing相乘,结果就是路径和地图,强度因数1/σ表示信度。

下面是将SLAM适用于广义环境设置的参数和调用输出结果:

num_landmarks = 5  # 地标数量
N = 20  # time steps
world_size = 100.0  # 世界的尺寸
measurement_range = 50.0  # 能检测到地标的检测范围 
motion_noise = 2.0  
measurement_noise = 2.0 
distance = 20.0  # 机器人打算移动的距离
data = make_data(N,num_landmarks,world_size,measurement_range,motion_noise,measurement_noise,distance)
result = slam(data,N,num_landmarks,motion_noise,measurement_noise)
print_result(N,num_landmarks,result)

make_data(),装入环境参数,返回一个运动序列和一个测量序列,即将写的函数slam()装入这两个数据序列和以上这些参数设置,返回一个机器人路径表和估计的地标位置。

初始位置设置在[50,50],这个世界的中心。

 

取所有的输入参数,并设置矩阵Ω和矢量Xi的维数。 维度是路径的长度加上地标数量的两倍,因为在相同的数据结构中为每一个空格都建立了x与y。然后,为Ω创建一个矩阵,为Xi创建一个向量,给它适当的尺寸,然后引入一个约束条件,即初始位置必须是world_size / 2.0,强度值为1.0。这对最终解决方案没有影响,因为这是唯一的绝对约束。 但是你可以看到矩阵的主对角线是1,x是1,y是1,Xi向量一样。

dim = 2* (N + num_landmarks)
Omega = matrix()
Omega.zero(dim,dim)
Omega.value[0][0] = 1.0
Omega.value[1][1] = 1.0
Xi = matrix()
Xi.zero(dim, 1)
Xi.value[0][0] = world_size / 2
Xi.value[1][0] = world_size / 2

 

S标识位置,L标识坐标,每个格子有x和y组成。以下编写SLAM代码。

from math import *
import random

#这里引入矩阵操作的类机器人的类
def make_data(N, num_landmarks, world_size, measurement_range, motion_noise, measurement_noise, distance)
    complete = False

    while not complete:

        data = []

        # make robot and landmarks
        r = robot(world_size, measurement_range, motion_noise, measurement_noise)
        r.make_landmarks(num_landmarks)
        seen = [False for row in range(num_landmarks)]
    
        # guess an initial motion
        orientation = random.random() * 2.0 * pi
        dx = cos(orientation) * distance
        dy = sin(orientation) * distance
    
        for k in range(N-1):
    
            # sense
            Z = r.sense()

            # check off all landmarks that were observed
            for i in range(len(Z)):
                seen[Z[i][0]] = True
    
            # move
            while not r.move(dx, dy):
                # if we'd be leaving the robot world, pick instead a new direction
                orientation = random.random() * 2.0 * pi
                dx = cos(orientation) * distance
                dy = sin(orientation) * distance

            # memorize data
            data.append([Z, [dx, dy]])

        # we are done when all landmarks were observed; otherwise re-run
        complete = (sum(seen) == num_landmarks)

    print ' '
    print 'Landmarks: ', r.landmarks
    print r

    return data
   
def print_result(N, num_landmarks, result):
    print
    print 'Estimated Pose(s):'
    for i in range(N):
        print '    ['+ ', '.join('%.3f'%x for x in result.value[2*i]) + ', ' \
            + ', '.join('%.3f'%x for x in result.value[2*i+1]) +']'
    print
    print 'Estimated Landmarks:'
    for i in range(num_landmarks):
        print '    ['+ ', '.join('%.3f'%x for x in result.value[2*(N+i)]) + ', ' \
            + ', '.join('%.3f'%x for x in result.value[2*(N+i)+1]) +']'

def
 slam(data, N, num_landmarks, motion_noise, measurement_noise): #set the dimension of the filter dim = 2 * (N + num_landmarks) #make the constraint information matrix and vector Omega = matrix() Omega.zero(dim,dim) Omega.value[0][0] = 1.0 Omega.value[1][1] = 1.0 Xi = matrix() Xi.zero(dim, 1) Xi.value[0][0] = world_size / 2 Xi.value[1][0] = world_size / 2 for k in range(len(data)): #n is the index of the robots pose in the matrix/vector n = k * 2 measurement = data[k][0] motion = data[k][1] # integrate measurements for i in range(len(measurement)): #m is the index of the landmark coordinate in the  #matrix/vector m = 2 * (N + measurement[i][0]) # update the information matrix according to measurement for b in range(2): Omega.value[n+b][n+b] += 1.0 / measurement_noise Omega.value[m+b][m+b] += 1.0 / measurement_noise Omega.value[n+b][m+b] += ­1.0 / measurement_noise Omega.value[m+b][n+b] += ­1.0 / measurement_noise Xi.value[ n + b ][ 0 ] += measurement[i][1+b] / measurement_noise Xi.value[m+b][0] += measurement[i][1+b] / measurement_noise # update the information matrix according to motion for b in range(4): Omega.value[n+b][n+b] += 1.0 / motion_noise for b in range(2): Omega.value[n+b][n+b+2] += ­1.0 / motion_noise Omega.value[n+b+2][n+b ] += ­1.0 / motion_noise Xi.value[n+b][0] += ­motion[b] / motion_noise Xi.value[n+b+2][0] += motion[b] / motion_noise mu = Omega.inverse() * Xi return mu

#这里调用这节的第一个编程(参数设置及调用输出)

 

输入起始位置和所有地标测量位置,得出每次机器人的估计坐标位置(即路径)和所有地标的位置估计

 

 

 

 

两个月零八天,蒙特卡洛定位——>卡尔曼追踪定位——>粒子滤波定位——>路径规划——>PID控制——>SLAM

How far is self car~

 

posted on 2017-11-13 19:51  Real-Ying  阅读(689)  评论(0编辑  收藏  举报

导航