Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
ref:
水中的鱼: [LeetCode] Unique Paths II 解题报告
[解题思路]
和Unique Path一样的转移方程:
Step[i][j] = Step[i-1][j] + Step[i][j-1] if Array[i][j] ==0
or = 0 if Array[i][j] =1
or = 0 if Array[i][j] =1
1 public class Solution { 2 public int uniquePathsWithObstacles(int[][] obstacleGrid) { 3 int[][] ways = new int[obstacleGrid.length+1][obstacleGrid[0].length+1]; 4 if(obstacleGrid[0][0] == 1) 5 return 0; 6 ways[0][1] = 1; 7 for(int i =1; i<= obstacleGrid.length; i++){ 8 for(int j = 1; j<=obstacleGrid[0].length; j++){ 9 if(obstacleGrid[i-1][j-1] == 0){ 10 ways[i][j] = ways[i-1][j]+ways[i][j-1]; 11 }else{ 12 ways[i][j] = 0; 13 } 14 } 15 } 16 17 return ways[obstacleGrid.length][obstacleGrid[0].length]; 18 } 19 }
滚动数组
1 class Solution { 2 3 public int uniquePathsWithObstacles(int[][] obstacleGrid) { 4 int row = obstacleGrid.length; 5 if(row == 0) return 0; 6 int col = obstacleGrid[0].length; 7 8 if(obstacleGrid[0][0] == 1) 9 return 0; 10 11 int[] paths = new int[col]; 12 paths[0] = 1; 13 for(int i = 0; i < row ; i++){ 14 for(int j = 0; j < col; j++){ 15 if(obstacleGrid[i][j] == 1){ 16 paths[j] = 0; 17 }else if(j > 0){ 18 paths[j] = paths[j]+paths[j-1]; 19 } 20 } 21 } 22 return paths[col -1]; 23 } 24 }
public class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int m = obstacleGrid.length; int n = obstacleGrid[0].length; int[][] steps = new int[m+1][n+1]; for(int i = 0; i < n+1; i++){ steps[m][i] = 0; } for(int i = 0; i < m+1; i++){ steps[i][n] = 0; } steps[m-1][n] =1; for(int i = m-1; i>= 0; i--){ for(int j = n-1; j >=0; j--){ if(obstacleGrid[i][j] == 1){ steps[i][j] = 0; }else { steps[i][j] = steps[i+1][j] + steps[i][j+1]; } } } return steps[0][0]; } }