编译原理之消除左递归

1.将以下文法消除左递归,分析符号串 i*i+i 。

   并分别求FIRST集、FOLLOW集,和SELECT集

E -> E+T | T
T -> T*F | F
F -> (E) | i

消除左递归:

E -> TE'
E' -> +TE' | ε
T -> FT'
T' -> *FT' | ε
F -> (E) | i

分析i * i + i:

FIRST集:

FIRST(E)=FIRST(T)=FIRST(F)={(,i}
FIRST(E’)= {+,ε}
FIRST(E’)= {+,ε}
FIRST(T’)={*,ε}

 FOLLOW集:

FOLLOW(E)={),#}
FOLLOW(E')=FOLLOW(E)={),#}
FOLLOW(T)={+,),#}
FOLLOW(T’)= FOLLOW(T)= {+,),#}
FOLLOW(F)= {+,*,) ,#}  

 SELECT集:

SELECT(E -> TE')={(,i}
SELECT(E' -> +TE')={+}
SELECT(E' ->  ε)={),#}
SELECT(T -> FT')={(,i}
SELECT(T' ->*FT' )={*}
SELECT()={T' ->ε}={+,),#}
SELECT( F -> (E))={(}
SELECT()={F ->i}={i}

 

2.文法改写,并分别求FIRST集、FOLLOW集,和SELECT集

(1) A -> aABe | a
   B -> Bb | d

(2) S -> Aa | b
   A -> SB
   B -> ab

(1)

消除左递归:

A→aA'
A'→ABe| ε
B→dB'
B'→bB' | ε
FIRST集:
FIRST(A)={a}
FIRST(A')={a,ε}
FIRST(B)={d}
FIRST(B')={b,ε}

FOLLOW集:

FOLLOW(A)={d,#}
FOLLOW(A')={d,#}
FOLLOW(B)={e}
FOLLOW(B')={e}

 SELECT集:

SELECT(A→aA')={a}
SELECT(A'→ABe)={a}
SELECT(A'→ε)={d,#}
SELECT(B→dB')={d}
SELECT(B'→bB')={b}
SELECT(B'→ε)={e}

 

(2)
消除左递归:
S→bS'
S'→BaS' | ε
B→ab

FIRST集:

FIRST(S)={b}
FIRST(S')={a,ε}
FIRST(B)={a}

 FOLLOW集:

FOLLOW(S)={#}
FOLLOW(S')={#}
FOLLOW(B)={a}

 SELECT集:

SELECT(S→bS')={b}
SELECT(S'→BaS' )={a,ε}
SELECT(S'→ ε )={#}
SELECT(B→ab)={a}

 

课堂练习:

求以下文法的FIRST集、FOLLOW集和SELECT集。

(1)

S -> Ap
A -> a |ε
A -> cA
A -> aA
 
FIRST集:
FIRST(S)={a,c,p}
FIRST(A)={a}
FIRST(A)={c}
FIRST(A)={a}
FOLLOW集:
FOLLOW(S)={#}
FOLLOW(A)={p}
SELECT集:
SELECT(S->Ap)={a,c,p}
SELECT(A->a)={a}
SELECT(A->ε)={p}
SELECT(A->cA)={c}
SELECT(A->aA)={a}

 

(2)

S->Ap
S->Bq
A->a
A->cA
B->b
B->dB

FIRST集:
FIRST(S)={a,c}
FIRST(S)={b,d}
FIRST(A)={a}
FIRST(A)={c}
FIRST(B)={b}
FIRST(B)={d}
FOLLOW集:
FOLLOW(S)={#}
FOLLOW(A)={p}
FOLLOW(B)={q}

SELECT集:

 

SELECT()={}
SELECT(S->Ap)={a,c}
SELECT(S->Bq)={b,d}
SELECT(A->a)={a}
SELECT(A->cA)={c}
SELECT(B->b)={b}
SELECT(B->dB)={d}

 

 

 

 
posted @ 2019-11-14 22:14  诚哥博客  阅读(1306)  评论(0编辑  收藏  举报