「SP741」STEAD - Steady Cow Assignment - 题解

  • 前言

    写网络流,因为 rp 过低一直 TLE (悲)。

    结果二分图过了。

    顺手来一发二分图的题解。


  • 题目大意

    农夫约翰的 \(N\) 头牛各自居住在 \(B\) 个牛棚之一中。当然,这些牛棚容量有限制。一些牛喜欢它们目前居住的牛棚,另一些并不怎么喜欢。

    约翰想重新安排这些牛,让它们尽可能同样高兴,甚至可以让它们全都讨厌指定的牛棚。

    每头牛给约翰这些牛棚在它们心目中的位置(不会有两个牛棚在某头牛心目中处于同等位置),一头牛的开心值为它所住牛棚在它心目中的位置。

    你的任务就是牛(开心值最大值与最小值之差)的最小值。


  • 分析

    你的任务就是牛(开心值最大值与最小值之差)的最小值。

    这句话很好想到二分

    所以我们可以二分差的最小值,再用 check 函数。

    N头牛各自居住在B个牛棚之一中

    一头牛对应一个牛棚,也就是二分图匹配

    所以,每次二分后,可以枚举每个区间,然后跑二分图匹配,判断匹配数是否为 \(n\)

    这些牛棚容量有限制。

    一个牛棚可以塞 \(b_i\) 只牛,换句话说,就是一个牛棚可以匹配 \(b_i\) 只牛。

    所以在跑二分图匹配的时候,加一个 \(cnt_i\) 表示\(i\) 个牛棚已经匹配了 \(cnt_i\) 只牛

    然后就是二分图操作的时候还要枚举 \(cnt_i\) 只牛。

    复杂度 \(O(n^2m^2log_m)\)


  • 代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int Maxn=1000+5;
int n,m,ans,mp[Maxn][25],b[Maxn];
int st,ed,cnt[Maxn],matched[25][Maxn];
bool vis[Maxn];
bool found(int x)
{	
	for(int i=st;i<=ed;i++)
	{	
		int y=mp[x][i];
		if(vis[y])continue;
		vis[y]=1;
		if(cnt[y]<b[y])
		{	
			matched[y][++cnt[y]]=x;
			return 1;
		}
		else{
			for(int j=1;j<=cnt[y];j++)
				if(found(matched[y][j]))
				{	
					matched[y][j]=x;
					return 1;
				}
		}
	}
	return 0;
}
int match()
{	
	int res=0;
	memset(matched,0,sizeof(matched));
	memset(cnt,0,sizeof(cnt));
	for(int i=1;i<=n;i++)
	{	
		memset(vis,0,sizeof(vis));
		if(found(i))res++;
	}
	return res;
}
bool check(int len)
{	
	for(st=1;st<=m;st++)
	{	ed=st+len-1;
		if(ed>m)break;
		if(match()==n)return 1;
	}
	return 0;
}
int main()
{	
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
			scanf("%d",&mp[i][j]); 
	for(int i=1;i<=m;i++)
		scanf("%d",&b[i]);
	int l=0,r=m,mid;
	while(l<=r)
	{	
		mid=(l+r)>>1;
		if(check(mid))ans=mid,r=mid-1;
		else l=mid+1;
	}
	printf("%d\n",ans);
	return 0;
}
//沿着风的轨迹 乱舞蹁跹 困于死水之间

\[\text{by Rainy7} \]

posted @ 2020-08-30 13:21  Rainy7  阅读(242)  评论(0编辑  收藏  举报