关于LeetCode的Largest Rectangle in Histogram的低级解法

在某篇博客见到的Largest Rectangle in Histogram的题目,感觉蛮好玩的,于是想呀想呀,怎么求解呢?

还是先把题目贴上来吧

题目写的很直观,就是找直方图的最大矩形面积,不知道是受之前的trie tree影响怎么的,感觉树这玩意还真有用,于是就思考呀,还真别说,真想出一种方式,好吧,其实是入了一个大坑,也无妨,记录下来,好歹也是思路历程.....

大概思路这样的:

每次寻找直方图的最小值,记录此时以该最小值,和以其为高度的矩形面积,再将直方图以该最小值为界限,将直方图分成若干份,按照同样思路对每个子直方图继续求解,这样如果把每个直方图作为节点的话,其实也形成了一棵树,不过这树没啥价值,因为本题并不关心得到最大矩形的路径,只要求面积即可,是时候献丑了,代码贴上:

#include <vector>
#include <list>
#include <iostream>
#include <stack>
using namespace std;
class LRTreeNode
{
private:
	int getMin()
	{
		if (right-left == 0)
		{
			return 0;
		}
		int min = (*heights)[left];
		for (int i=left;i<right;i++)
		{
			min = (*heights)[i] > min ? min : (*heights)[i];
		}
		return min;
	}
	void getMaxArea()
	{
		maxArea = bottom*(right-left);
	}
public:
	int left, right;
	int bottom;
	int min;
	int maxArea;
	static vector<int>* heights;
	vector<LRTreeNode*> lrnv;
	LRTreeNode(int bottom,int left,int right)
	{
		this->left = left;
		this->right = right;
		this->bottom=getMin()+bottom;
		this->min = getMin();
		getMaxArea();
	}
	vector<LRTreeNode*>* genChildren()
	{
		int left2=left, right2=left;
		for (int i = left; i < right; i++)
		{
			(*heights)[i] -= min;
			
			if ((*heights)[i] == 0 )
			{
				if (right2-left2 != 0)
				{
					lrnv.push_back(new LRTreeNode(bottom,left2,right2));
				}
				left2 = i+1;
				right2 = i+1;
			}
			else
			{
				right2++;
			}
		}
		if (right2 - left2 != 0)
		{
			lrnv.push_back(new LRTreeNode(bottom, left2, right2));
		}
		return &lrnv;
	}
};
vector<int>* LRTreeNode::heights = NULL;
class LRTree
{
private:
	LRTreeNode root;
public:
	LRTree(vector<int>& heights) :root(0,0,heights.size())
	{
		
	}
	int getMaxArea()
	{
		int max = root.maxArea;
		list<LRTreeNode*> st;
		vector<LRTreeNode*>* t = root.genChildren();
		LRTreeNode* stt;
		for (int i = 0; i < t->size(); i++)
		{
			st.push_back((*t)[i]);
			max = max >(*t)[i]->maxArea ? max : (*t)[i]->maxArea;
		}
		while (st.empty() == false)
		{
			stt = st.back();
			t = stt->genChildren();
			st.pop_back();
			for (int i = 0; i < t->size(); i++)
			{
				st.push_back((*t)[i]);
				max = max > (*t)[i]->maxArea ? max : (*t)[i]->maxArea;
			}
			delete stt;
		}
		return max;
	}
};

class Solution {
public:
	int largestRectangleArea(vector<int>& heights);
};
int Solution::largestRectangleArea(vector<int>& heights)
{
	LRTreeNode::heights = &heights;
	LRTree t(heights);
	return t.getMaxArea();
}




int main()
{
	vector<int> t = {1,2,3,4,5};
	Solution s;
	cout << s.largestRectangleArea(t);
	return 0;
}

 代码里面有几个值得注意的问题:

1.按照之前所说的思路,每个节点都得存储一个子直方图,这样并非最好方法,试想如果直方图为n,依次增加,则空间复杂度为O(n^2),故采用了所有节点共用一个直方图,每个节点存储左右界限即可,也就是LRTreeNode的left,right;

2.在每次的子直方图中都减去了底部部分,所以最终的直方图数据会被变化。

该种方法虽然采用了分治的思想,但其本质其实是遍历了所有的可能的矩形,其实效果并不好,由于最小值的多次寻找增加了复杂度,但作为思路历程,还是一并记录。

posted @ 2016-08-31 16:35  Rainlin  阅读(226)  评论(0编辑  收藏  举报