算法
目录
算法之二分法
二分法使用有前提: 数据集必须有先后顺序(升序 降序)
l1 =[13,21,35,46,52,67,76,87,99,123,213,321,432,564,612]
# 查找一个数 123
"""
二分法原理
获取数据集中间的元素 比对大小
如果中间的元素大于目标数据 那么保留数据集的左边一半
如果中间的元素小于目标数据 那么保留数据集的右边一半
然后针对剩下的数据集再二分
如果中间的元素大于目标数据 那么保留数据集的左边一半
如果中间的元素小于目标数据 那么保留数据集的右边一半
...
"""
def get_target(l1, target_num):
# 最后需要考虑找不到的情况 l1不可能无限制二分
if len(l1) == 0:
print('不好意思 真的没有 找不到')
return
# 1.获取中间元素的索引值(只能是整数)
middle_index = len(l1) // 2
# 2.判断中间索引对应的数据与目标数据的大小
if target_num > l1[middle_index]:
# 3.保留数据集右侧
l1_left = l1[middle_index + 1:]
# 3.1.对右侧继续二分 重复执行相同代码 并且复杂度降低
print(l1_left)
get_target(l1_left, target_num)
elif target_num < l1[middle_index]:
# 4.保留数据集左侧
l1_right = l1[:middle_index]
print(l1_right)
# 4.1.对右侧继续二分 重复执行相同代码 并且复杂度降低
get_target(l1_right, target_num)
else:
print('找到了', target_num)
get_target(l1, 13)
"""
二分法的缺陷
1.如果要找的元素就在数据集的开头 二分更加复杂(分更多次)
2.数据集必须有顺序
目前没有最完美的算法 都有相应的限制条件
"""