python装饰器,迭代器,生成器,协程

python装饰器[1]

  首先先明白以下两点

#嵌套函数
def out1():
    def inner1():
        print(1234)
    inner1()#当没有加入inner时out()不会打印输出1234,当前层级也就是作用域下必须调用函数才能引用
out1()
#函数作用域
def out2():
    a = 'aaa'
    def inner2():
        a = 'bbb'
        print(a)
    inner2()
    print(a)
out2()#当相同变量处于不同嵌套函数中,会根据作用函数由内而外查找

装饰器:本质还是一个函数, 在不改变函数调用方式的情况下 对函数进行额外功能的封装,装饰一个函数 转给他一个其他的功能

装饰器的目的:装饰器的原本是用来在项目上线之后,因为已经上线了,大批量改代码的话很麻烦,由此产生了装饰器

  1. 不能修改被装饰的函数的源代码
  2. 不能修改被装饰的函数的调用方式
import time
def demo():
    print("wo shi rainbol")
def time1():
    start = time.time()
    demo()#给time1函数增加了一个demo的功能
    end  = time.time()
    print(end-start)
time1()
#这样方式很low,如果有一个添加n个函数添加此功能会很麻烦
import time
def demo():
    print("wo shi rainbol")
def demo2():
    print("wo yeshi rainbol")
def time1(fuc):
    start = time.time()
    fuc()#把之前的demo改成公用的fuc,函数即变量
    end = time.time()
    print(end-start)
time1(demo)#通过调用time1方法,fuc赋值成了demo,再调用demo的方法
time1(demo2)
#time1(demo。。)
  以上完成了对任意函数改变调用方式进行了功能的封装,那如何用不改变调用方式的情况下对其进行功能的封装呢?
import time
def demo():
    print("wo shi rainbol")
def time1(fuc):
    def inner():#根据之前学过的嵌套函数,增加一层inner方法,把值放入其中
        start = time.time()
        fuc()
        end = time.time()
        print(end-start)
    return inner#返回inner方法,但是没有运行
demo = time1(demo)#time1包含了inner的功能/拿到inner的返回值并且赋值给res,装饰器的目的是不改变变量名所以这边仍然用demo变量赋值
demo()#demo通过括号运行inner方法
#下面通过真正的装饰器可以省去上面的步骤
import time
def time1(fuc):#2.time1(demo),这里的fuc相当于形参,其实就是demo
def inner(): 
  start
= time.time()
  fuc()
  end
= time.time()
  
print(end-start)
  
return inner#3.返回inner函数,但没有执行哦
@time1
#1.python先会整体浏览一遍代码关键字的代码,找到了demo方法上头有装饰
    # 先调用装饰器,time1也就是demo = time1(demo),括号中的demo相当于实参
def demo():
    print("wo shi rainbol")
# demo = time1(demo)                <=====> @time1 去掉@time1在这家这段也是一样的
demo()#4.现在才执行()执行函数
#简单装饰器
import time
def simper(fuc):
    def inner(*args,**kwargs):
        start = time.time()
        fuc(*args,**kwargs)#增加的方法
        end = time.time()
        print(end - start)
    return inner
@simper #demo = simper(demo)
def demo(name):#定义一个方法
    print(name)#增加一个公用的功能点
demo(1)
#高级装饰器  当我们再原来装饰器的业务上再增加一个形参,来判断我们的业务是否符合指定的状态,这需要外面再套一层函数
import time
def harder(type):
    if type == 1:
        def out(fuc):
            def inner(*args,**kwargs):
                start = time.time()
                fuc(*args,**kwargs)
                end = time.time()
                print(end - start)
            return inner
        return out
    elif type == 2:
        pass
@harder(1)#返回out函数
def demo(name):
    print(name)
demo(1)

  其他可以参考https://blog.csdn.net/u013471155/article/details/68960244  这个写得很详细

python装饰器[2]

装饰器与之间的迭代

  下面是产品四次提出需求后再不修改调用参数使用装饰器在修改lose函数来完成我们业务上的需求,原因是上线项目许多接口都调用我们这个类下的参数,再不破坏接口本身情况下使用装饰器迭代是最佳选择

import time


# 现在有一个需求1.0:在整个功能的基础上再添加一个减去4.5的操作使得最后结果为0,前提条件是不修改调用参数
def outer(fuc):
    def inner(*args, **kwargs):
        a = fuc(*args, **kwargs) - 4.5
        return a

    return inner


# 迭代需求1.1:在整个功能的基础上再添加一个增加10的操作使得最后结果为10,提前条件是不修改调用参数
def outer2(fuc2):
    def inner2(*args, **kwargs):
        b = fuc2(*args, **kwargs) + 10
        return int(b)

    return inner2


# 迭代需求1.2:在整个功能的基础上再添加一个时间参数判断lose函数的时间,目前为了模拟添加2秒延迟时间,提前条件是不修改调用参数
def showtime(fuc):
    def inner3(*args, **kwargs):
        starttime = time.time()
        a = fuc(*args, **kwargs)
        time.sleep(2)
        endtime = time.time()
        b = endtime - starttime
        return a, b

    return inner3


# 迭代需求2.0:目前项目的lose的方法在业务繁忙时会异常中断,为此接口添加异常处理,提前条件是不修改调用参数
def tryexception(fuc):
    def tryer(self, *args, **kwargs):
        try:
            res = fuc(self, *args, **kwargs)
        except Exception as e:
            self.lose()
            return 'ERROR'
        return res

    return tryer

'''主程序'''
class MyDecorato(object):
    def __init__(self):
        pass

    def chengxu(self, a, b):
        c = a + b
        return c

    @tryexception #4.最后调用tryexception装饰器,装饰器之间调用是从下到上来依次调用
    @showtime  # 3.调用showtime装饰器
    @outer2  # 2.调用outer2装饰器
    @outer  # 1.先调用outer装饰器
    def lose(self, c):#频繁调用的函数lose
        pingjun = c / 2
        return pingjun


d = MyDecorato()
res1 = d.chengxu(6, 3)
res2, time = d.lose(res1)
print('最后的值:', res2, '时间:', time)

 python装饰器[3]

#wrap函数为functools标准库中模块
def test():
    '''i am test'''
    print('一个简单的实验')

test()
print(test.__doc__)
print(test.__name__)
#
#>> 一个简单的实验
#>> i am test
#>> test
print('--------------------------------')
def outer(fuc):
    '''outer is me'''
    print('this is outer')
    def inner(*args,**kwargs):
        '''inner is me'''
        print('this is inner1')
        fuc(*args,**kwargs)
        print('this is inner2')
    return inner


@outer
def test():
    '''i am test'''
    print('一个简单的实验')

test()
print(test.__doc__)
print(test.__name__)

#>> this is outer
#>> this is inner1
#>> 一个简单的实验
#>> this is inner2
#>> inner is me
#>> inner

print('-----------------------')
#如果我们想要得到test里面的数据就要调用一个特定装饰器来帮我们实现

import functools
def outer(fuc):
    '''outer is me'''
    print('this is outer')
   # @functools.wraps(fuc)
    def inner(*args,**kwargs):
        '''inner is me'''
        print('this is inner1')
        fuc(*args,**kwargs)
        print('this is inner2')
    #return inner
    return functools.update_wrapper(inner,fuc)#@functools.wraps(fuc)也可以,update_wrapper是调用其内部wrapper
@outer
def test():
    '''i am test'''
    print('一个简单的实验')
test()
print(test.__doc__)
print(test.__name__)
#>> this is outer
#>> this is inner1
#>> 一个简单的实验
#>> this is inner2
#>>> i am test
#>> test


print('------------------')
#保持wrapper和test的属性值一样,这样也可以实现同样的效果
import functools
def outer(fuc):
    '''outer is me'''
    print('this is outer')
    def inner(*args,**kwargs):
        '''inner is me'''
        print('this is inner1')
        fuc(*args,**kwargs)
        print('this is inner2')
    inner.__doc__ = fuc.__doc__
    inner.__name__ = fuc.__name__
    return inner
@outer
def test():
    '''i am test'''
    print('一个简单的实验')

test()
print(test.__doc__)
print(test.__name__)

 python装饰器[4]

#通过类中的装饰器实现,普通方式

class Foo(object):
    def __init__(self):
        pass

    def decorator(foo):
        def inner(self):
            print('before')
            foo(self)
            print('after')

        return inner

    @decorator
    def test(self):
        print('testing')


foo = Foo()
foo.test()
#通过类中的装饰器实现,继承方式
class Foo(object):
    def __init__(self):
        pass

    def decorator(self):
        def inner(*args, **kwargs):
            print('before')
            self(*args, **kwargs)
            print('after')

        return inner

    @decorator
    def test1(self):
        print('我被执行了')


class Foo2(Foo):
    @Foo.decorator  # 执行被继承的方法
    def decorator(self):
        print('执行被继承的方法开始')
        super(Foo2, self).test1()  # 运行Foo2父类Foo的test1方法
        print('执行被继承的方法结束')


foo = Foo()
foo.test1()
print('-----')
foo2 = Foo2()
foo2.decorator()
#实例
class Test1(object):
    def decorator1(self):
        def inner(*args, **kwargs):
            self(*args, **kwargs)
            print('n年前添加的附加功能')

        return inner

    @decorator1
    def test1(self):
        print('n年前实现的某个功能')


class Test2(Test1):
    def decorator2(self):
        def inner(*args, **kwargs):
            self(*args, **kwargs)
            print('今天添加的附加功能')

        return inner

    @decorator2
    def test2(self):
        super(Test2, self).test1()
        print('昨天自己实现的功能')


foo = Test2()
foo.test2()
View Code
#通过类中的装饰器实现,获取对象方法的实例属性
def mod_test(cls):
    # 返回修改的类

    def decorator(fun):
        # 返回装饰函数

        def new_fun(self):
            print(self.before)
            print(fun(self))
            print(self.after)

        return new_fun

    cls.test = decorator(cls.test)
    return cls


@mod_test
class Foo(object):
    def __init__(self):
        self.before = "before"
        self.after = "after"

    def test(self):
        return "testing"


foo = Foo()
foo.test()

 

 python迭代器

 

l = [1,2,3,4,5,6]
print(l.__iter__())  #iter(l)  这两者是一样的,都返回了一样迭代器对象 <list_iterator object at 0x00000000023B7080>
d = (iter(l))
print((next(d)))#返回 1
print((next(d)))#返回 2
#所以生成器本身就是迭代器

#for循环本身主要做的三件事:

for i in [1,2,34,5,5]:
# 1.
   iter([1,2,34,5,5])#调用可迭代对象的iter方法返回一个迭代器对象
# 2.调用迭代器对象的next方法
# 3.处理Stoplteration

#校验
from collections import Iterator,Iterable
# Iterable  迭代器
# Iterator 迭代对象
print(isinstance([1334],list))#判断给对象是否为一个list,返回布尔值
print(isinstance(l,Iterable))#判断是否是迭代对象,返回布尔值

 

  自定义迭代器

class Mytest:
    def __init__(self, len):
        self.index = 0
        self.len = len

    def __iter__(self):
        return self

    def __next__(self):
        if self.index < self.len:
            self.index += 1
            return self.index
        raise StopIteration


for i in Mytest(20):
    print(i)
#打印1-20,迭代器底层调用,结构复杂

 python生成器

  用法1:

f = (x for x in range(1000))#使用列表生成式外面套了一层中括号并赋值给f对象
print(f)#此时f打印的就是一个生成器对象  <generator object <genexpr> at 0x0000000001DD79E8>
#此时需要打印x必须如下方式,生成器就像一位厨师,做出x就是一盘盘菜,每一盘菜必须吃完再吃第二盘,而且不能跳着吃,倒着吃
print(next(f))#调用使用next()比较常见
print(next(f))
print(next(f))
print(f.__next__())#f.__next__()也是可以的        py2的调用方式是f.next直接调用
print(f.__next__())
print(f.__next__())

  用法2:

#yield也是生成器中的例子,如果在没有使用next(),函数根本不会被执行,调用每一次程序会检测yield如果有,yield包括后面的代码不会执行,直到下次调用才执行下次的,所以函数中只要有yield就是生成器
#yield可以理解成return
def test(len):
    print(len,'11')
    yield 1
    print(len,'222')
    yield 2
    print(len,'333')
test('1')#此函数不会被调用
for i in test('1'):#for内置有生成器next,可以对生成器对象一直使用next(n)
    print(i,'调用')
#打印
# 1 11
# 1 调用
# 1 222
# 2 调用
# 1 333
#这个就是异步io的原理了,python里面的协程基于yield实现
#生成器的好处:
#如果我们写一个    danger = [x for x in range(9999999999999999999)]
# 当我们打印danger时我们的电脑会在内存中放置0-n的数据,造成内存不足,死机的情况,生成器的出现会把旧变量替换成新变量,从而不会造成大数据所产成内存泄露的问题
nodanger = (x for x in range(999999999999999999999999))
print(next(nodanger))

 

协程

  简单的说只要能够完成多任务切换的都是协程,规避io操作是协程体现出的效果

  yield是协程最底层的使用方法

#yield的使用
def f():
    print('jjjj')
    yield 1
    print('gggg')
    yield
print(f())#创建一个生成器对象,但是函数不会执行



gen = f()
#next(gen)#执行生成器对象
gen.send(None)
x = gen.send(10)#next(gen)这两者是一样的
print(x)

  gevent模块

#gevent模块 在gevent中主要模式就是greenlet,它是c扩展的轻量级协程
from greenlet import greenlet
def test1():
    print('111')
    b.switch()
    print('333')
    b.switch()
def test2():
    print('222')
    a.switch()
    print('444')
a = greenlet(test1)#创建一个生成器对象
b = greenlet(test2)
a.switch()
# from gevent import monkey
# monkey.patch_all()#实时监听io堵塞,效果显著,要注意的是这两句话要放到最上面不然就会报错,我也不知道为什么
import gevent
def test3():
    print('模拟io堵塞1')
    gevent.sleep(1)#模拟堵塞时间
    print('堵塞消除1')
def test4():
    print('模拟io堵塞2')
    gevent.sleep(2)
    print( '堵塞消除2')

gevent.joinall([gevent.spawn(test3),gevent.spawn(test4)])
#joinall效果是如果两个方法中其中一个出现io堵塞,会跳到另外一个方法,如果都堵塞都会等着,直到io堵塞消除
#优势:io堵塞的时间取决于io堵塞最长的时间,提升效率

 协程实例:


from gevent import monkey
monkey.patch_all()
#gevent模块  #基于greenlet封装,避免多线程切换导致io执行效率降低
import gevent
import requests

def run(name, url):
    r = requests.get(url)
    open(name + '.html', 'wb').write(r.content)
url = {'rainbol01': 'https://www.cnblogs.com/RainBol/',
       'rainbol02': 'https://www.cnblogs.com/RainBol/p/9505438.html',
       'rainbol03': 'https://www.cnblogs.com/RainBol/p/10077388.html'
       }
for name, url in url.items():
    g = gevent.spawn(run, name, url)  # 启动
    g.join()  # 等待并切换

#阻塞等待分配任务完成后结束
# l = []
# for i in range(10):
#     g = gevent.spawn(run,name,url)
#     l = g.append(g)
# g.joinall(l)

 https://www.cnblogs.com/RainBol/p/13612932.html  更多协程

 

 

版权声明:本文原创发表于 博客园,作者为 RainBol 本文欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则视为侵权。

posted @ 2018-10-21 14:51  RainBol  阅读(299)  评论(0编辑  收藏  举报
Live2D