线代第六章定义&定理整理(不更新了)
Chapter 6
6.1 Inner Products and Norms
Definition (inner product).
Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted \(⟨x,y⟩\), such that for all x, y, and z in V and all c in F, the following hold:
(a) \(⟨x + z,y⟩ = ⟨x,y⟩ + ⟨z,y⟩.\)
(b) $⟨cx,y⟩=c⟨x,y⟩. $
(c) \(\overline{⟨x, y⟩} = ⟨y, x⟩,\) where the bar denotes complex conjugation.
(d) \(⟨x,x⟩>0\) if \(x \neq 0\).
Definition (conjugate transpose).
Let \(A ∈ M_{m×n}(F)\). We define the conjugate transpose or adjoint of A to be the \(n×m\) matrix \(A^∗\) such that \((A^∗)_{ij} = \overline{A_{ji}}\) for all \(i,j\).
Definition (inner product space).
A vector space \(V\) over \(F\) endowed with a specific inner product is called an inner product space. If \(F = C\), we call V a complex inner product space, whereas if \(F = R\), we call \(V\) a real inner product space.
Definition of some inner products.
Frobenius Inner product: \(\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right) \text { for } A, B \in M_{n\times n}(F).\)
实际上就是\(\langle A, B\rangle=\sum_{i}\sum_{j}A_{ij}\overline{B_{ij}}\)。
Standard inner product on \(F^n\): \(x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) and \(y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\) in \(\mathrm{F}^{n}\), \(\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\).
实际上和Frobenius inner product是一个东西。
H of continuous complex-valued functions defined on the interval \([0, 2π]\): \(\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t\).
Theorem 6.1.
Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F , the following statements are true.
(a) \(⟨x,y + z⟩\) = \(⟨x,y⟩\) + \(⟨x,z⟩\).
(b) \(⟨x,cy⟩=\overline c⟨x,y⟩\).
(c) \(⟨x,0⟩ = ⟨0,x⟩ = 0\).
(d) \(⟨x,x⟩=0\) if and only if \(x=0\).
(e) If \(⟨x,y⟩=⟨x,z⟩\) for all \(x∈V\), then \(y=z\).
性质(a)和(b)统称conjugate linear,注意不要漏写共轭。
Definition (norm).
Let \(V\) be an inner product space. For \(x ∈ V\), we define the norm or length of \(x\) by \(\|x\|= ⟨x, x⟩\).
Theorem 6.2.
Let \(V\) be an inner product space over \(F\). Then for all \(x, y ∈ V\) and \(c ∈ F\) , the following statements are true.
(a) \(\|cx\|= |c|·\|x\|.\)
(b) \(\|x\|=0\) if and only if \(x=0\). In any case, \(\|x\|≥0\).
(c) (Cauchy–Schwarz Inequality)\(|⟨x,y⟩|≤\|x\|·\|y\|\).
(d) (Triangle Inequality) \(\|x + y\| ≤ \|x\| + \|y\|\).
证明
(c)
若 \(y=0\)显然成立,假设\(y \neq 0\)。对于任意\(c \in F\),有
\[\begin{aligned} 0 \leq\|x-c y\|^{2} &=\langle x-c y, x-c y\rangle=\langle x, x-c y\rangle- c\langle y, x-c y\rangle \\ &=\langle x, x\rangle-\bar{c}\langle x, y\rangle- c\langle y, x\rangle+ c \bar{c}\langle y, y\rangle \end{aligned} \]令\(c=\frac{\langle x, y\rangle}{\langle y, y\rangle}\),则有\(0 \leq\langle x, x\rangle-\frac{|\langle x, y\rangle|^{2}}{\langle y, y\rangle}=\|x\|^{2}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}\),所证不等式成立。
(d)
\[\begin{aligned}\|x+y\|^{2} &=\langle x+y, x+y\rangle=\langle x, x\rangle+\langle y, x\rangle+\langle x, y\rangle+\langle y, y\rangle \\ &=\|x\|^{2}+2 \Re\langle x, y\rangle+\|y\|^{2} \\ & \leq\|x\|^{2}+2|\langle x, y\rangle|+\|y\|^{2} \\ & \leq\|x\|^{2}+2\|x\| \cdot\|y\|+\|y\|^{2} \\ &=(\|x\|+\|y\|)^{2} \end{aligned} \]
Definition (orthogonal, unit vector, orthonormal).
Let \(V\) be an inner product space. Vectors \(x\) and \(y\) in \(V\) are orthogonal (perpendicular) if \(⟨x, y⟩ = 0\).
A subset \(S\) of \(V\) is orthogonal if any two distinct vectors in \(S\) are orthogonal.
A vector \(x\) in \(V\) is a unit vector if \(\|x\| = 1\).
Finally, a subset \(S\) of \(V\) is orthonormal if \(S\) is orthogonal and consists entirely of unit vectors.
6.2 The Gram–Schmidt Process and Orthogonal Complements
Definition (orthonormal basis).
Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis that is orthonormal.
Theorem 6.3.
Let V be an inner product space and \(S = {v_1, v_2, . . . , v_k}\) be an orthogonal subset of V consisting of nonzero vectors. If \(y ∈ span(S)\), then
证明:设\(y = \sum_{i=1}^ka_iv_i\),写出\(\langle y, v_i\rangle\)表达式即可得出。
Corollary 1.
If, in addition to the hypotheses of Theorem 6.3, S is orthonormal and y ∈ span(S), then
Corollary 2.
Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent.
Theorem 6.4. (the Gram–Schmidt process)
Let V be an inner product space and \(S = \{w_1, w_2, \ldots, w_n\}\) be a linearly independent subset of V. Define \(S′ = \{v_1, v_2, \ldots, v_n\}\), where \(v_1 = w_1\) and
Then S′ is an orthogonal set of nonzero vectors such that span(S′) = span(S).
Theorem 6.5.
Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis \(\beta\). Furthermore, if \(\beta = \{v_1,v_2,...,v_n\}\) and x ∈ V, then
证明:用 Gram–Schmidt 把 orthogonal basis 构造出来,再 normalize 即可。至于\(x=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle v_{i}\) 实际上就是 Thereom 6.3 Corollary 1.
Corollary.
Let V be a finite-dimensional inner product space with an orthonormal basis $ = \beta = {v_1, v_2, \ldots, v_n}$. Let T be a linear operator on V, and let A = \([T]_\beta\). Then for any i and j, $$Aij = \langle T(vj),vi\rangle.$$
Definition (Fourier coefficients).
Let $\beta $ be an orthonormal subset (possibly infinite) of an inner product space V, and let \(x ∈ V\). We define the Fourier coefficients of \(x\) relative to \(\beta\) to be the scalars \(⟨x, y⟩\), where \(y ∈ β\).
Definition (orthogonal complement).
Let S be a nonempty subset of an inner product space V. We define \(S^\perp\) to be the set of all vectors in V that are orthogonal to every vector in S; that is, \(S^{\perp}=\{x \in V:\langle x, y\rangle= 0 \text { for all } y \in S\}\). The set \(s^\perp\) is called the orthogonal complement of S.
注意
S可以是任意集合,不一定是 subspace;
若\(0 \in S\), \(S\cap S^\perp = \{0\}\); 否则\(S\cap S^\perp = \O\).
Theorem 6.6.
Let \(W\) be a finite-dimensional subspace of an inner product space \(V\), and let \(y∈V\). Then there exist unique vectors \(u∈W\) and \(z\in W^\perp\) such that \(y=u+z\). Furthermore, if\({v_1,v_2,\ldots,v_k}\)is an orthonormal basis for \(W\), then
证明:直接令\(u=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}\),令\(z = y - u\),只需证\(z\in W^\perp\). 对任意 \(j\), 有
\[\begin{aligned}\left\langle z, v_{j}\right\rangle &=\left\langle\left(y-\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}\right), v_{j}\right\rangle=\left\langle y, v_{j}\right\rangle-\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle\left\langle v_{i}, v_{j}\right\rangle \\ &=\left\langle y, v_{j}\right\rangle-\left\langle y, v_{j}\right\rangle= 0 \end{aligned} \]下证 unique. 假设\(y = u + z = u' + z', u' \in W, z' \in W^\perp\), 则\(u - u'\in W, z - z' \in W^\perp\), \(u - u' = z - z' \in W \cap W^\perp = \{0\}.\)
Corollary (orthogonal projection).
The vector \(u = \sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}\) is the unique vector in \(W\) that is “closest” to \(y\); that is, for any \(x ∈ W\),$ |y − x| ≥ |y − u|$, and this inequality is an equality if and only if \(x = u\). \(u\) is called the orthogonal projection of \(y\) on \(W\).
证明:
注意到\(\langle u-x, z\rangle = 0\)
\(\|y-x\|^2 = \|u + z - x\|^2 = \|u-x\|^2 + \|z\|^2 \ge \|z\|^2\)
Theorem 6.7.
Suppose that \(S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\) is an orthonormal set in an n-dimensional inner product space \(V\). Then
(a) S can be extended to an orthonormal basis \(\{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n\}\) for \(V\).
(b) If \(W = span(S)\), then \(S_1 = \{v_{k+1}, v_{k+2}, \ldots, v_n\}\) is an orthonormal basis for \(W^\perp\).
(c) If \(W\) is any subspace of \(V\), then \(dim(V) = dim(W) + dim(W^\perp)\).
证明:
(a) 先 extend,然后用 Gram–Schmidt process.
(b) 显然\(S_1 \subseteq W^\perp\), 只需证\(span(S_1) = W^\perp\). \(\forall x = \sum_{i = 1}^{n}a_iv_i \in W^\perp, \langle x, v_i\rangle = 0\) for \(1 \le i \le k\), 所以\(x = \sum_{i = k + 1}^{n}a_iv_i \in span(S_1).\)
(c) 由(b)显然。
6.3 The Adjoint of A Linear Operator
Theorem 6.8.
Let \(V\) be a finite-dimensional inner product space over \(F\), and let \(g: V → F\) be a linear transformation. Then there exists a unique vector \(y ∈ V\) such that \(g(x) = ⟨x, y⟩\) for all \(x ∈ V\).
Let \(\beta=\left\{v_{1}, v_{2}, \dots, v_{n}\right\}\) be an orthonormal basis for V, then
证明:
先证存在,直接令\(y = \sum_{i=1}^n\overline{g(v_i)}v_i,\) 可以计算出\(\forall 1 \le j \le n, \langle v_j, y\rangle = \langle v_j, \sum_{i=1}^n\overline{g(v_i)}v_i\rangle = \sum_{i=1}^n g(v_i)\langle v_j, v_i\rangle = g(v_j).\) 根据\(g\)是 linear transformation, \(g(x) = \langle x, y \rangle.\)
再证唯一,假设\(\forall x\)有\(\langle x, y'\rangle = g(x) = \langle x, y\rangle\),那么由于\(x\)的任意性,\(y' = y\)(Theorem 6.1 (e))。
Theorem 6.8 为 \(T^*\)的定义做了准备工作,只有证明了\(y\)的唯一性,才能定义出一个映射。
Theorem 6.9 (Definition of adjoint).
Let \(V\) be a finite-dimensional inner product space, and let \(T\) be a linear operator on \(V\). Then there exists a unique function \(T^*: V → V\) such that \(⟨T(x), y⟩ = ⟨x, T^*(y)⟩\) for all \(x, y ∈ V\). Furthermore, \(T^*\) is linear. \(T^*\) is called the adjoint of \(T\).
证明:
先证唯一存在,\(\forall y \in V\), 定义\(g(x) = \langle T(x), y \rangle\), 则根据 Theorem 6.9, 存在唯一\(z \in V\)使得\(\forall x \in V\)有\(g(x) = \langle x, z \rangle\), 定义\(T^*(y) = z\), 即有\(\langle T(x), y\rangle = \langle x, T^*(y)\rangle.\)
然后证linear,这个根据 inner product 的 conjugate linear 性质可以容易地写出。
Theorem 6.10.
Let V be a finite-dimensional inner product space, and let \(β\) be an orthonormal basis for \(V\). If \(T\) is a linear operator on \(V\), then \(\left[\mathrm{T}^{*}\right]_{\beta}=[\mathrm{T}]_{\beta}^{*}.\)
证明: \(B_{i j}=\left\langle\mathrm{T}^{*}\left(v_{j}\right), v_{i}\right\rangle=\overline{\left\langle v_{i}, \mathrm{T}^{*}\left(v_{j}\right)\right\rangle}=\overline{\left\langle\mathrm{T}\left(v_{i}\right), v_{j}\right\rangle}=\overline{A_{j i}}=\left(A^{*}\right)_{i j}\)
Corollary.
Let \(A\) be an \(n × n\) matrix. Then \(L_{A^*} = (L_A)^*\).
Theorem 6.11.
Let \(V\) be an inner product space, and let \(T\) and \(U\) be linear operators on \(V\). Then
Corollary.
以上对 linear operator 的性质,对矩阵也成立。
Let \(A\) and \(B\) be \(n × n\) matrices. Then
这些性质的证明既可以转化为左乘、用linear operator的性质做,也可以直接用矩阵adjoint的定义。
Lemma 1.
Let \(A \in \mathbb{M}_{m \times n}(F), x \in F^{n},\) and \(y \in F^{m}\). Then
证明:直接用标准$ F^n \(向量内积的定义。\)\(\langle A x, y\rangle_{m}=y^{*}(A x)=\left(y^{*} A\right) x=\left(A^{*} y\right)^{*} x=\left\langle x, A^{*} y\right\rangle_{n}.\)$
Lemma 2.
Let \(A \in \mathbb{M}_{m \times n}(F)\). Then \(rank(A^*A) = rank(A)\).
证明: 可证\(N(L_{A^*A}) = N(L_A)\),即\(A^*Ax = 0 \Leftrightarrow Ax = 0.\) 右推左显然成立,下证左推右。若\(A^*Ax = 0\), 则$0 = x*AAx = (Ax)^Ax = \langle Ax, Ax \rangle, $ 所以\(Ax = 0\).
Corollary.
If \(A\) is an \(m \times n\) matrix such that \(rank(A) = n\), then \(A^*A\) is invertible.
Theorem 6.12 (Least Squares Approximation,最小二乘法) .
Let \(A ∈ M_{m×n} (F)\) and \(y ∈ F^m\) . Then there exists \(x_0 ∈ F^n\) such that \((A^*A)x_0 = A^*y\) and \(∥Ax_0 −y∥ ≤ ∥Ax−y∥\) for all \(x ∈ F^n\). Furthermore, if \(rank(A) = n\), then \(x_0 = (A^*A)^{−1}A^*y\).
证明:
\(Ax \in R(A)\), 而在\(R(A)\)中存在唯一的离\(y\)最近的向量\(Ax_0\),这里的\(x_0\)即为所求。由 Theorem 6.6, \(Ax_0 - y \in R(A)^\perp.\) 现在求\(R(A)^\perp\)。若\(z \in R(A)^\perp,\) \(\forall x \in V,\) 有\(\langle A^*z, x \rangle = \langle z, Ax \rangle = 0\)。由于\(x\)任意性,\(A^*z = 0\),即\( z \in N(A^*).\) 反过来亦可推出若\(z \in N(A^*)\)则有\(z \in R(A)^\perp.\) 所以\(R(A)^\perp = N(A^*).\) 因为\(Ax_0 - y \in R(A)^\perp = N(A^*)\),所以有\(A^*(Ax_0 - y) = 0\), 若\(rank(A) = n\),则有\(x_0 = (A^*A)^{−1}A^*y.\)
Theorem 6.13 (Minimal Solution to Systems of Linear Equations,线性方程组的最小解)
A solution s to \(Ax = b\) is called a minimal solution if \(∥s∥ ≤ ∥u∥\) for all other solutions \(u\).
Let \(A \in \mathbb{M}_{m \times n}(F)\) and \(b ∈ F^m\). Suppose that \(Ax = b\) is consistent. Then the following statements are true.
(a) There exists exactly one minimal solution \(s\) of \(Ax = b\), and \(s ∈ R(L_{A^*})\).
(b) The vector s is the only solution to \(Ax = b\) that lies in \(R(L_{A^*})\); that is, if u satisfies \(\left(A A^{*}\right) u=b\), then \(s = A^*u\).
证明(a):对于任意解\(x\),可将\(x\)分解为\(x = s + y\),其中\(y \in N(A), s \in N(A)^\perp = R(A^*).\) \(Ax = As + Ay = As + 0 = As\), 所以\(s\)也是\(Ax = b\)的解;而由于\(\langle s, y \rangle = 0\),有\(\|x\| = \|s + y\| = \sqrt{\|s\|^2 + \|y\|^2} \ge \|s\|\),当且仅当\(y = 0\)即\(x = s\)时取等,所以s是唯一最小解.
证明(b):假设\(R(L_{A^*})\)中存在另一解\(v\),则\(s - v \in N(A) \cap N(A)^\perp = {0}\), 所以\(s =v\).
6.4 Normal And Self-Adjoint Operators
Lemma.
Let \(T\) be a linear operator on a finite-dimensional inner product space \(V\). If \(T\) has an eigenvector, then so does \(T^*\).
证明:设\(v\)是\(T\)的y一个eigenvector,则\(0 = \langle0, x\rangle = \langle(T - \lambda I)(v), x\rangle = \langle v, (T - \lambda I)^*(x)\rangle = \langle v, (T^*-\overline\lambda I)(x)\rangle\)
所以\(R(T^*-\overline\lambda I) = {v}^\perp \subsetneqq V\), 则\(N(T^*-\overline\lambda I) \neq\{0\}\)中的任意vector都是对应eigenvalue为\(\overline\lambda\)的eigenvector。
Theorem 6.14 (Schur).
Let \(T\) be a linear operator on a finite-dimensional inner product space \(V\). Suppose that the characteristic polynomial of \(T\) splits. Then there exists an orthonormal basis \(β\) for \(V\) such that the matrix \([T]_β\) is upper triangular.
证明:
用数学归纳法。设\(dim(V) = n\),\(n=1\)时显然成立。假设对\(n-1\)成立,则对n,由于特征多项式split,\(T\)有至少一个eigenvalue,则\(T^*\)也有至少一个eigenvalue,设为\(\lambda\),它对应至少一个unit vector \(z\). 设\(W = span(\{z\})\),下证\(W^\perp\)是T-invariant.
\(\forall y \in W^\perp, x = cz \in W\) where \(c \in F\),\(\langle T(y), x = cz \rangle = \langle y, T^*(cz) \rangle = \overline{c\lambda}\langle y, z \rangle = 0.\) 所以\(T(y) \in W^\perp.\) 所以\(W^\perp\)是T-invariant,可以定义\(T_{W^\perp}\),而\(dim(W^\perp) = n - 1\),应用假设可得存在一个\(W^\perp\)的orthonormal basis \(\gamma\) 使得\([T_{W^\perp}]_\gamma\)是上三角矩阵,显然\(z\)垂直于\(\gamma\)中的每个向量,令\(\beta = \gamma \cup \{z\}\),则\(\beta\)是orthonormal basis, 且\([T]_β\)也是上三角矩阵。
Definitions (normal).
Let \(V\) be an inner product space, and let \(T\) be a linear operator on \(V\). We say that \(T\) is normal if \(TT^*= T^*T\). An \(n×n\) real or complex matrix \(A\) is normal if \(AA^* = A^*A.\)
Theorem 6.15.
Let \(V\) be an inner product space, and let \(T\) be a normal operator on \(V\). Then the following statements are true.
(a) \(\|\mathrm{T}(x)\|=\left\|\mathrm{T}^{*}(x)\right\|\) for all \(x \in V\).
(b) \(T−cI\) isnormal for every \(c∈F\).
(c) If \(x\) is an eigenvector of \(T\), then \(x\) is also an eigenvector of \(T^*\). In fact, if \(T(x) = λx\), then \(T^*(x) = \overline λx\).
(d) If \(λ_1\) and \(λ_2\) are distinct eigenvalues of \(T\) with corresponding eigenvectors \(x_1\) and \(x_2\), then \(x_1\) and \(x_2\) are orthogonal.
证明:
(c) 令 \(U = T - \lambda I\),则\(U^* = T^* - \overline\lambda I\),且根据(b),\(U\)也normal。根据(a)有\(0 \|U(x)\| = \|U^*(x)\| = \|T^*(x) - \overline\lambda x\|\)。
(d) \(\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\left\langle\lambda_{1} x_{1}, x_{2}\right\rangle=\left\langle T\left(x_{1}\right), x_{2}\right\rangle=\left\langle x_{1}, T^{*}\left(x_{2}\right)\right\rangle =\left\langle x_{1}, \overline{\lambda_{2}} x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle\)
由于\(\lambda_1 \neq \lambda_2\), 有\(\left\langle x_{1}, x_{2}\right\rangle=0\).
Theorem 6.16.
Let \(T\) be a linear operator on a finite-dimensional complex inner product space \(V\). Then \(T\) is normal if and only if there exists an orthonormal basis for \(V\) consisting of eigenvectors of T.
证明:
假设\(T\) normal,则根据代数基本定理,\(T\)的特征多项式在复数域上split;根据Schur定理,存在一个\(V\)的 orthonormal basis \(\beta = \{v_1, v_2, \ldots, v_n\}\)使得\([T]_\beta\)是上三角矩阵。则\(v_1\)一定是eigenvalue。假设\(v_1, v_2, \ldots, v_{k-1}\) 都是eigenvalue,那么\(1 \le j < k\), \(A_{jk} = \langle T(v_k) ,v_j\rangle = \langle v_k, T^*(v_j)\rangle = \langle v_k, \overline{\lambda_j} v_j\rangle = 0\),所以\(v_k\)也是eigenvalue。
假设存在全是eigenvector的orthonormal basis \(\beta\),则\([T]_{\beta}\)和\([T^*]_\beta\)都是对角矩阵,满足交换律,所以\(T\) is normal.
注意:
对于复数域上的向量空间,normal => diagonalizable;
然而对于实数域上的向量空间则不一定,例如旋转矩阵。
Definition (self-adjoint).
Let T be a linear operator on an inner product space V. We say that T is self-adjoint (Hermitian) if T = \(T^*\). An \(n × n\) real or complex matrix \(A\) is self-adjoint (Hermitian) if \(A = A^*\).
Lemma.
Let T be a self-adjoint operator on a finite-dimensional inner product space V. Then
(a) Every eigenvalue of T is real.
(b) Suppose that V is a real inner product space. Then the characteristic polynomial of T splits.
证明:
(a) \(\lambda x = T(x) = T^*(x) = \overline\lambda x\)
Theorem 6.17.
Let \(T\) be a linear operator on a finite-dimensional real inner product space $$V$$. Then \(T\) is self-adjoint if and only if there exists an orthonormal basis \(β\) for \(V\) consisting of eigenvectors of \(T\).
证明:假设T是self-adjoint, 根据Shur定理,找一组orthonormal basis \(\beta\)使\([T]_\beta = A\)是上三角矩阵,而\(A^* = [T]^*_\beta = [T^*]_\beta = [T]_\beta = A\). 所以\(A^*\)也是上三角矩阵,所以A是对角矩阵。
6.5 Unitary & Orthogonal Operators and their Matrices
Definitions (unitary/orthogonal operator, isometry).
If \(\|T(x)\| = \|x\|\) for all \(x \in V\), we call T a unitary operator if \(F = C\) and an orthogonal operator if \(F = R\).
In the infinite-dimensional case, an operator satisfying \(\|T(x)\| = \|x\|\) for all \(x \in V\) is called an isometry.
Lemma.
Let U be an self-adjoint operator on a finite-dimensional inner product space V. If \(\langle x, U(x)\rangle = 0\) for all \(x \in V\), then \(U = T_0\).
证明:若\(U(x) = \lambda x\), 则\(0 = \langle x, U(x)\rangle = \lambda\langle x, x\rangle\).
Theorem 6.18:
4 equivalent statements about unitary/othogonal operators:
Let T be a linear operator on a finite-dimensional inner product space V. Then the following statements are equivalent.
(a) \(TT^* = T^*T = I\).
(b) \(\langle T(x), T(y)\rangle = \langle x, y\rangle\) for all \(x, y \in V\).
(c) If \(\beta\) is an orthonormal basis for V, then \(T(\beta)\) is an orthonormal basis for \(V\).
(d) \(\|T(x)\| = \|x\|\) for all \(x \in V\).
证明:
(a) -> (b): \(\langle T(x), T(y)\rangle = \langle x, T^*T(y)\rangle = \langle x, y\rangle\)
(b) -> (c) 显然
(c) -> (d): \(\|x\|^2 = \langle \sum_{i=1}^na_iv_i, \sum_{j=1}^na_jv_j\rangle = \sum_{i=1}^n\sum_{j=1}^na_i\overline{a_j}\langle v_i, v_j\rangle = \sum_{i=1}^n\sum_{j=1}^na_i\overline{a_j}\delta_{ij} = \sum_{i=1}^n\|a_i\|^2\)
(d) -> (a): 将x在\(\beta\)下表示,T(x)在\(T(\beta)\)下表示,可得二者范数相同。
Corollary 1 & 2:
\(|\lambda| = 1 \Leftrightarrow\) orthonormal/unitary.
Let T be a linear operator on a finite-dimensional complex [real] inner product V. Then V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1 if and only if T is both unitary[self-adjoint and orthogonal].
Definition (unitarily equivalent).
\(A = P^*BP\) where \(P\) is unitary. (The definition of orthogonally equivalent is similar.)
Theorem 6.19 & 6.20.
Complex[real] matrix \(A\) is normal[symmetrix] iff \(A\) is unitarily equivalent to a complex[real] diagonal matrix.
证明(Complex):
If \(A = P^*DP\), then $$AA* = (P*DP)(PD^P) = P*DDP = P*DDP = P*DPP^DP = A^*A$$.
充分性前文已证。
Theorem 6.21 (Schur) 舒尔定理的矩阵表示.
\(A\in M_{n\times n}(F)\), and the characteristic polynomial of \(A\) splits. If F = C[R], then A is unitarily[orthogonally] equivalent to a complex[real] upper triangular matrix.
6.6 Orthogonal Projections & Spectral Theorem
Definition (orthogonal projection)
We say \(T\) is an orthogonal projection if \(R(T)^\perp = N(T)\) and \(N(T)^\perp = R(T)\).
Theorem 6.24.
Let V be an inner product space, and let T be a linear operator on V. Then T is an orthogonal projection iff T has an adjoint \(T^*\) and \(T^2=T=T^*\).
Theorem 6.25 (The Spectral Theorem).
T is a linear operator on a finite-dimensional inner product space V over F with the distinct eigenvalues \(\lambda_1,\lambda_2,\ldots,\lambda_k\). Assume that T is normal is F = C and that T is self-adjoint if F = R. For each \(i(1 \le i \le k)\), Let \(W_i\) be the eigenspace of T corresponding to the eigenvalue \(\lambda_i\), and let \(T_i\) be the orthogonal projection of \(V\) on \(W_i\). Then:
(a) \(V = W_1\oplus W_2 \oplus \ldots \oplus W_k\).
(b) if \(W_i'\) denotes the direct sum of the subspaces \(W_j\) for \(j \neq i\), then \(W_i^\perp = W_i'\).
(c) \(T_iT_j = \delta_{ij}T_i\) for \(1 \le i, j \le k\).
(d) \(I = T_1 + T_2 + \ldots + T_k\).
(e) \(T = \lambda_1T_1 + \lambda_2T_2 + \ldots + \lambda_kT_k\).
The set \(\{\lambda_1, \lambda_2, \dots, \lambda_k\}\) is called the spectrum of \(T\), the sum \(I = T_1 + T_2 + \ldots + T_k\) is called the resolution of the identity operator induced by \(T\), and the sum \(T = \lambda_1T_1 + \lambda_2T_2 + \ldots + \lambda_kT_k\) is called the spectral decomposition of T.
Corollary 1.
If F = C, then T is normal iff \(T^* = g(T)\) for some polynomial \(g\).
Corollary 2.
If F = C, then T is unitary iff T is normal and all \(|\lambda| = 1\).
Corollary 3.
If F = C and T is normal, then T is self-adjoint iff every eigenvalue of T is real.
Corollary 4.
Let T be as is the spectral theorem with spectral decomposition \(T = \lambda_1T_1 + \lambda_2T_2 + \ldots + \lambda_kT_k\), Then each \(T_j\) is a polynomiao in T.
博客地址:http://rabbithu.cnblogs.com