线代第六章定义&定理整理(不更新了)

Chapter 6

6.1 Inner Products and Norms

Definition (inner product).

Let V be a vector space over F. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F, denoted x,y, such that for all x, y, and z in V and all c in F, the following hold:

(a) x+z,y=x,y+z,y.

(b) cx,y=cx,y.

(c) x,y¯=y,x, where the bar denotes complex conjugation.

(d) x,x>0 if x0.

Definition (conjugate transpose).

Let AMm×n(F). We define the conjugate transpose or adjoint of A to be the n×m matrix A such that (A)ij=Aji¯ for all i,j.

Definition (inner product space).

A vector space V over F endowed with a specific inner product is called an inner product space. If F=C, we call V a complex inner product space, whereas if F=R, we call V a real inner product space.

Definition of some inner products.

Frobenius Inner product: A,B=tr(BA) for A,BMn×n(F).

实际上就是A,B=ijAijBij¯

Standard inner product on Fn: x=(a1,a2,,an) and y=(b1,b2,,bn) in Fn, x,y=i=1naib¯i.

实际上和Frobenius inner product是一个东西。

H of continuous complex-valued functions defined on the interval [0,2π]: f,g=12π02πf(t)g(t)¯dt.

Theorem 6.1.

Let V be an inner product space. Then for x, y, z ∈ V and c ∈ F , the following statements are true.

(a) x,y+z = x,y + x,z.

(b) x,cy=c¯x,y.

(c) x,0=0,x=0.

(d) x,x=0 if and only if x=0.

(e) If x,y=x,z for all xV, then y=z.

性质(a)和(b)统称conjugate linear,注意不要漏写共轭。

Definition (norm).

Let V be an inner product space. For xV, we define the 􏰉norm or length of x by x=x,x.

Theorem 6.2.

Let V be an inner product space over F. Then for all x,yV and cF , the following statements are true.

(a) cx=|c|·x.

(b) x=0 if and only if x=0. In any case, x0.

(c) (Cauchy–Schwarz Inequality)|x,y|x·y.

(d) (Triangle Inequality) x+yx+y.

证明

(c)

y=0显然成立,假设y0。对于任意cF,有

0xcy2=xcy,xcy=x,xcycy,xcy=x,xc¯x,ycy,x+cc¯y,y

c=x,yy,y,则有0x,x|x,y|2y,y=x2|x,y|2y2,所证不等式成立。

(d)

x+y2=x+y,x+y=x,x+y,x+x,y+y,y=x2+2x,y+y2x2+2|x,y|+y2x2+2xy+y2=(x+y)2

Definition (orthogonal, unit vector, orthonormal).

Let V be an inner product space. Vectors x and y in V are orthogonal (perpendicular) if x,y=0.

A subset S of V is orthogonal if any two distinct vectors in S are orthogonal.

A vector x in V is a unit vector if x=1.

Finally, a subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.

6.2 The Gram–Schmidt Process and Orthogonal Complements

Definition (orthonormal basis).

Let V be an inner product space. A subset of V is an orthonormal basis for V if it is an ordered basis that is orthonormal.

Theorem 6.3.

Let V be an inner product space and S=v1,v2,...,vk be an orthogonal subset of V consisting of nonzero vectors. If yspan(S), then

y=i=1ky,vivi2vi

证明:设y=i=1kaivi,写出y,vi表达式即可得出。

Corollary 1.

If, in addition to the hypotheses of Theorem 6.3, S is orthonormal and y ∈ span(S), then

y=i=1ky,vivi

Corollary 2.

Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent.

Theorem 6.4. (the Gram–Schmidt process)

Let V be an inner product space and S={w1,w2,,wn} be a linearly independent subset of V. Define S={v1,v2,,vn}, where v1=w1 and

vk=wkj=1k1wk,vjvj2vj for 2kn.

Then S′ is an orthogonal set of nonzero vectors such that span(S′) = span(S).

Theorem 6.5.

Let V be a nonzero finite-dimensional inner product space. Then V has an orthonormal basis β. Furthermore, if β={v1,v2,...,vn} and x ∈ V, then

x=i=1nx,vivi

证明:用 Gram–Schmidt 把 orthogonal basis 构造出来,再 normalize 即可。至于x=i=1nx,vivi 实际上就是 Thereom 6.3 Corollary 1.

Corollary.

Let V be a finite-dimensional inner product space with an orthonormal basis =β=v1,v2,,vn. Let T be a linear operator on V, and let A = [T]β. Then for any i and j, Aij=T(vj),vi.

Definition (Fourier coefficients).

Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let xV. We define the Fourier coefficients of x relative to β to be the scalars x,y, where yβ.

Definition (orthogonal complement).

Let S be a nonempty subset of an inner product space V. We define S to be the set of all vectors in V that are orthogonal to every vector in S; that is, S={xV:x,y=0 for all yS}. The set s is called the orthogonal complement of S.

注意
  • S可以是任意集合,不一定是 subspace;

  • 0S, SS={0}; 否则SS=.

Theorem 6.6.

Let W be a finite-dimensional subspace of an inner product space V, and let yV. Then there exist unique vectors uW and zW such that y=u+z. Furthermore, ifv1,v2,,vkis an orthonormal basis for W, then

u=i=1ky,vivi

证明:直接令u=i=1ky,vivi,令z=yu,只需证zW. 对任意 j, 有

z,vj=(yi=1ky,vivi),vj=y,vji=1ky,vivi,vj=y,vjy,vj=0

下证 unique. 假设y=u+z=u+z,uW,zW, 则uuW,zzW, uu=zzWW={0}.

Corollary (orthogonal projection).

The vector u=i=1ky,vivi is the unique vector in W that is “closest” to y; that is, for any xW,|yx||yu|, and this inequality is an equality if and only if x=u. u is called the orthogonal projection of y on W.

证明:

注意到ux,z=0

yx2=u+zx2=ux2+z2z2

Theorem 6.7.

Suppose that S={v1,v2,,vk} is an orthonormal set in an n-dimensional inner product space V. Then

(a) S can be extended to an orthonormal basis {v1,v2,,vk,vk+1,,vn} for V.

(b) If W=span(S), then S1={vk+1,vk+2,,vn} is an orthonormal basis for W.

(c) If W is any subspace of V, then dim(V)=dim(W)+dim(W).

证明:

(a) 先 extend,然后用 Gram–Schmidt process.

(b) 显然S1W, 只需证span(S1)=W. x=i=1naiviW,x,vi=0 for 1ik, 所以x=i=k+1naivispan(S1).

(c) 由(b)显然。

6.3 The Adjoint of A Linear Operator

Theorem 6.8.

Let V be a finite-dimensional inner product space over F, and let g:VF be a linear transformation. Then there exists a unique vector yV such that g(x)=x,y for all xV.

Let β={v1,v2,,vn} be an orthonormal basis for V, then

y=i=1ng(vi)¯vi.

证明:

先证存在,直接令y=i=1ng(vi)¯vi, 可以计算出1jn,vj,y=vj,i=1ng(vi)¯vi=i=1ng(vi)vj,vi=g(vj). 根据g是 linear transformation, g(x)=x,y.

再证唯一,假设xx,y=g(x)=x,y,那么由于x的任意性,y=y(Theorem 6.1 (e))。

Theorem 6.8 为 T的定义做了准备工作,只有证明了y的唯一性,才能定义出一个映射。

Theorem 6.9 (Definition of adjoint).

Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Then there exists a unique function T:VV such that T(x),y=x,T(y) for all x,yV. Furthermore, T is linear. T is called the adjoint of T.

证明:

先证唯一存在,yV, 定义g(x)=T(x),y, 则根据 Theorem 6.9, 存在唯一zV使得xVg(x)=x,z, 定义T(y)=z, 即有T(x),y=x,T(y).

然后证linear,这个根据 inner product 的 conjugate linear 性质可以容易地写出。

Theorem 6.10.

Let V be a finite-dimensional inner product space, and let β be an orthonormal basis for V. If T is a linear operator on V, then [T]β=[T]β.

证明: Bij=T(vj),vi=vi,T(vj)¯=T(vi),vj¯=Aji¯=(A)ij

Corollary.

Let A be an n×n matrix. Then LA=(LA).

Theorem 6.11.

Let V be an inner product space, and let T and U be linear operators on V. Then

 (a) (T+U)=T+U (b) (cT)=c¯T for any cF (c) (TU)=UT; (d) T=T (e) I=I

Corollary.

以上对 linear operator 的性质,对矩阵也成立。

Let A and B be n×n matrices. Then

 (a) (A+B)=A+B (b) (cA)=c¯A for all cF (c) (AB)=BA (d) A=A (e) I=I

这些性质的证明既可以转化为左乘、用linear operator的性质做,也可以直接用矩阵adjoint的定义。

Lemma 1.

Let AMm×n(F),xFn, and yFm. Then

Ax,ym=x,Ayn.

证明:直接用标准$ F^n Ax,ym=y(Ax)=(yA)x=(Ay)x=x,Ayn.$

Lemma 2.

Let AMm×n(F). Then rank(AA)=rank(A).

证明: 可证N(LAA)=N(LA),即AAx=0Ax=0. 右推左显然成立,下证左推右。若AAx=0, 则$0 = x*AAx = (Ax)^Ax = \langle Ax, Ax \rangle, $ 所以Ax=0.

Corollary.

If A is an m×n matrix such that rank(A)=n, then AA is invertible.

Theorem 6.12 (Least Squares Approximation,最小二乘法) .

Let AMm×n(F) and yFm . Then there exists x0Fn such that (AA)x0=Ay and Ax0y∥≤∥Axy for all xFn. Furthermore, if rank(A)=n, then x0=(AA)1Ay.

证明:

AxR(A), 而在R(A)中存在唯一的离y最近的向量Ax0,这里的x0即为所求。由 Theorem 6.6, Ax0yR(A). 现在求R(A)。若zR(A), xV,Az,x=z,Ax=0。由于x任意性,Az=0,即zN(A). 反过来亦可推出若zN(A)则有zR(A). 所以R(A)=N(A). 因为Ax0yR(A)=N(A),所以有A(Ax0y)=0, 若rank(A)=n,则有x0=(AA)1Ay.

Theorem 6.13 (Minimal Solution to Systems of Linear Equations,线性方程组的最小解)

A solution s to Ax=b is called a minimal solution if s∥≤∥u for all other solutions u.

Let AMm×n(F) and bFm. Suppose that Ax=b is consistent. Then the following statements are true.

(a) There exists exactly one minimal solution s of Ax=b, and sR(LA).

(b) The vector s is the only solution to Ax=b that lies in R(LA); that is, if u satisfies (AA)u=b, then s=Au.

证明(a):对于任意解x,可将x分解为x=s+y,其中yN(A),sN(A)=R(A). Ax=As+Ay=As+0=As, 所以s也是Ax=b的解;而由于s,y=0,有x=s+y=s2+y2s,当且仅当y=0x=s时取等,所以s是唯一最小解.

证明(b):假设R(LA)中存在另一解v,则svN(A)N(A)=0, 所以s=v.

6.4 Normal And Self-Adjoint Operators

Lemma.

Let T be a linear operator on a finite-dimensional inner product space V. If T has an eigenvector, then so does T.

证明:设vT的y一个eigenvector,则0=0,x=(TλI)(v),x=v,(TλI)(x)=v,(Tλ¯I)(x)

所以R(Tλ¯I)=vV, 则N(Tλ¯I){0}中的任意vector都是对应eigenvalue为λ¯的eigenvector。

Theorem 6.14 (Schur).

Let T be a linear operator on a finite-dimensional inner product space V. Suppose that the characteristic polynomial of T splits. Then there exists an orthonormal basis β for V such that the matrix [T]β is upper triangular.

证明:

用数学归纳法。设dim(V)=nn=1时显然成立。假设对n1成立,则对n,由于特征多项式split,T有至少一个eigenvalue,则T也有至少一个eigenvalue,设为λ,它对应至少一个unit vector z. 设W=span({z}),下证W是T-invariant.

yW,x=czW where cFT(y),x=cz=y,T(cz)=cλ¯y,z=0. 所以T(y)W. 所以W是T-invariant,可以定义TW,而dim(W)=n1,应用假设可得存在一个W的orthonormal basis γ 使得[TW]γ是上三角矩阵,显然z垂直于γ中的每个向量,令β=γ{z},则β是orthonormal basis, 且[T]β也是上三角矩阵。

Definitions (normal).

Let V be an inner product space, and let T be a linear operator on V. We say that T is normal if TT=TT. An n×n real or complex matrix A is normal if AA=AA.

Theorem 6.15.

Let V be an inner product space, and let T be a normal operator on V. Then the following statements are true.

(a) T(x)=T(x) for all xV.

(b) TcI isnormal for every cF.

(c) If x is an eigenvector of T, then x is also an eigenvector of T. In fact, if T(x)=λx, then T(x)=λ¯x.

(d) If λ1 and λ2 are distinct eigenvalues of T with corresponding eigenvectors x1 and x2, then x1 and x2 are orthogonal.

证明:

(c) 令 U=TλI,则U=Tλ¯I,且根据(b),U也normal。根据(a)有0U(x)=U(x)=T(x)λ¯x

(d) λ1x1,x2=λ1x1,x2=T(x1),x2=x1,T(x2)=x1,λ2¯x2=λ2x1,x2

由于λ1λ2, 有x1,x2=0.

Theorem 6.16.

Let T be a linear operator on a finite-dimensional complex inner product space V. Then T is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

证明:

假设T normal,则根据代数基本定理,T的特征多项式在复数域上split;根据Schur定理,存在一个V的 orthonormal basis β={v1,v2,,vn}使得[T]β是上三角矩阵。则v1一定是eigenvalue。假设v1,v2,,vk1 都是eigenvalue,那么1j<k, Ajk=T(vk),vj=vk,T(vj)=vk,λj¯vj=0,所以vk也是eigenvalue。

假设存在全是eigenvector的orthonormal basis β,则[T]β[T]β都是对角矩阵,满足交换律,所以T is normal​.

注意:

对于复数域上的向量空间,normal => diagonalizable;

然而对于实数域上的向量空间则不一定,例如旋转矩阵。

Definition (self-adjoint).

Let T be a linear operator on an inner product space V. We say that T is self-adjoint (Hermitian) if T = T. An n×n real or complex matrix A is self-adjoint (Hermitian) if A=A.

Lemma.

Let T be a self-adjoint operator on a finite-dimensional inner product space V. Then

(a) Every eigenvalue of T is real.
(b) Suppose that V is a real inner product space. Then the characteristic polynomial of T splits.

证明:

(a) λx=T(x)=T(x)=λ¯x

Theorem 6.17.

Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.

证明:假设T是self-adjoint, 根据Shur定理,找一组orthonormal basis β使[T]β=A是上三角矩阵,而A=[T]β=[T]β=[T]β=A. 所以A也是上三角矩阵,所以A是对角矩阵。

6.5 Unitary & Orthogonal Operators and their Matrices

Definitions (unitary/orthogonal operator, isometry).

If T(x)=x for all xV, we call T a unitary operator if F=C and an orthogonal operator if F=R.

In the infinite-dimensional case, an operator satisfying T(x)=x for all xV is called an isometry.

Lemma.

Let U be an self-adjoint operator on a finite-dimensional inner product space V. If x,U(x)=0 for all xV, then U=T0.

证明:若U(x)=λx, 则0=x,U(x)=λx,x.

Theorem 6.18:

4 equivalent statements about unitary/othogonal operators:

Let T be a linear operator on a finite-dimensional inner product space V. Then the following statements are equivalent.

(a) TT=TT=I.

(b) T(x),T(y)=x,y for all x,yV.

(c) If β is an orthonormal basis for V, then T(β) is an orthonormal basis for V.

(d) T(x)=x for all xV.

证明:

(a) -> (b): T(x),T(y)=x,TT(y)=x,y

(b) -> (c) 显然

(c) -> (d): x2=i=1naivi,j=1najvj=i=1nj=1naiaj¯vi,vj=i=1nj=1naiaj¯δij=i=1nai2

(d) -> (a): 将x在β下表示,T(x)在T(β)下表示,可得二者范数相同。

Corollary 1 & 2:

|λ|=1 orthonormal/unitary.

Let T be a linear operator on a finite-dimensional complex [real] inner product V. Then V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1 if and only if T is both unitary[self-adjoint and orthogonal].

Definition (unitarily equivalent).

A=PBP where P is unitary. (The definition of orthogonally equivalent is similar.)

Theorem 6.19 & 6.20.

Complex[real] matrix A is normal[symmetrix] iff A is unitarily equivalent to a complex[real] diagonal matrix.

证明(Complex):

If A=PDP, then $$AA* = (P*DP)(PD^P) = P*DDP = P*DDP = P*DPP^DP = A^*A$$.

充分性前文已证。

Theorem 6.21 (Schur) 舒尔定理的矩阵表示.

AMn×n(F), and the characteristic polynomial of A splits. If F = C[R], then A is unitarily[orthogonally] equivalent to a complex[real] upper triangular matrix.

6.6 Orthogonal Projections & Spectral Theorem

Definition (orthogonal projection)

We say T is an orthogonal projection if R(T)=N(T) and N(T)=R(T).

Theorem 6.24.

Let V be an inner product space, and let T be a linear operator on V. Then T is an orthogonal projection iff T has an adjoint T and T2=T=T.

Theorem 6.25 (The Spectral Theorem).

T is a linear operator on a finite-dimensional inner product space V over F with the distinct eigenvalues λ1,λ2,,λk. Assume that T is normal is F = C and that T is self-adjoint if F = R. For each i(1ik), Let Wi be the eigenspace of T corresponding to the eigenvalue λi, and let Ti be the orthogonal projection of V on Wi. Then:

(a) V=W1W2Wk.

(b) if Wi denotes the direct sum of the subspaces Wj for ji, then Wi=Wi.

(c) TiTj=δijTi for 1i,jk.

(d) I=T1+T2++Tk.

(e) T=λ1T1+λ2T2++λkTk.

The set {λ1,λ2,,λk} is called the spectrum of T, the sum I=T1+T2++Tk is called the resolution of the identity operator induced by T, and the sum T=λ1T1+λ2T2++λkTk is called the spectral decomposition of T.

[T]β=( λ1Im1OOOλ2Im2OOOλkImk)

Corollary 1.

If F = C, then T is normal iff T=g(T) for some polynomial g.

Corollary 2.

If F = C, then T is unitary iff T is normal and all |λ|=1.

Corollary 3.

If F = C and T is normal, then T is self-adjoint iff every eigenvalue of T is real.

Corollary 4.

Let T be as is the spectral theorem with spectral decomposition T=λ1T1+λ2T2++λkTk, Then each Tj is a polynomiao in T.

posted @   胡小兔  阅读(2505)  评论(6编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
历史上的今天:
2017-11-25 BZOJ 2243 染色 | 树链剖分模板题进阶版
2017-11-25 BZOJ 1036 树的统计 | 树链剖分模板题
2017-11-25 BZOJ 3295 动态逆序对 | CDQ分治
点击右上角即可分享
微信分享提示