BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论

BZOJ 2226 [Spoj 5971] LCMSum

这道题和上一道题十分类似。

\[\begin{align*} \sum_{i = 1}^{n}\operatorname{LCM}(i, n) &= \sum_{i = 1}^{n}\frac{i \times n}{\operatorname{gcd}(i, n)}\\ &= n \times \sum_{i = 1}^{n}\frac{i}{\operatorname{gcd}(i, n)} \end{align*}\]

\(d = \operatorname{gcd}(i, n)\),则\(d | n\)\(\operatorname{gcd}(\frac{i}{d}, \frac{n}{d}) = 1\)

则每个\(n\)的因数\(d\)的贡献是小于等于\(d\)的所有数(\(\frac{i}{d}\))之和。而这个值等于\(\frac{\phi(d) * d}{2}\)

所以答案就是:

\[\sum_{d | n}\frac{\phi(d) * d}{2} \]

注意这道题卡常卡得非常难受,所以能预处理的都预处理吧。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
    char c;
    bool op = 0;
    while(c = getchar(), c > '9' || c < '0')
        if(c == '-') op = 1;
    x = c - '0';
    while(c = getchar(), c >= '0' && c <= '9')
        x = x * 10 + c - '0';
    if(op) x = -x;
}
template <class T>
void write(T x){
    if(x < 0) putchar('-'), x = -x;
    if(x >= 10) write(x / 10);
    putchar('0' + x % 10);
}

const int N = 1000000;
int T, n, lst[N + 5], cnt;
bool notprime[N + 5];
ll ans, phi[N + 5];
void init(){
    phi[1] = 1;
    for(int i = 2; i <= N; i++){
        if(!notprime[i]) lst[++cnt] = i, phi[i] = i - 1;
        for(int j = 1; j <= cnt && lst[j] * i <= N; j++){
            notprime[lst[j] * i] = 1;
            if(i % lst[j] == 0){
                phi[lst[j] * i] = lst[j] * phi[i];
                break;
            }
            phi[i * lst[j]] = phi[i] * (lst[j] - 1);
        }
    }
    for(int i = 2; i <= N; i++)
        phi[i] = phi[i] * i / 2;
}

int main(){
    
    init();
    read(T);
    while(T--){
        read(n);
        ans = 0;
        for(int i = 1; i * i <= n; i++)
            if(n % i == 0){
                ans += phi[i];
                if(i * i < n) ans += phi[n / i];
            }
        write(ans * n), enter;
    }
    
    return 0;
}

posted @ 2017-12-17 14:31  胡小兔  阅读(319)  评论(0编辑  收藏  举报