51nod 1295 XOR key | 可持久化Trie树
51nod 1295 XOR key
这也是很久以前就想做的一道板子题了……学了一点可持久化之后我终于会做这道题了!
给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R)。求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少?
Input
第1行:2个数N, Q中间用空格分隔,分别表示数组的长度及查询的数量(1 <= N <= 50000, 1 <= Q <= 50000)。
第2 - N+1行:每行1个数,对应数组A的元素(0 <= A[i] <= 10^9)。
第N+2 - N+Q+1行:每行3个数X, L, R,中间用空格分隔。(0 <= X <= 10^9,0 <= L <= R < N)
Output
输出共Q行,对应数组A的区间[L,R]中的数与X进行异或运算,所能得到的最大值。
可持久化Trie树,就类似于昨天我写的可持久化线段树。
每次想要修改一个节点的时候,不直接在原来的节点上进行修改,而是在旁边新建一个点,复制原来点的信息,并在新点上面修改。每次通过访问历史根节点来访问历史版本。
配合离线询问,然后从左往右把数组中的数加入Trie树中,对于每个询问[l, r],可以通过第r棵Trie树与第l - 1棵Trie树相减得到区间中新建出来的Trie树,在上面进行正常的异或最大查询即可。
时间、空间复杂度都是\(O(32*(n + Q))\)。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef unsigned long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 50005, M = 3000000;
int n, Q, idx = 1, a[N], root[N] = {1}, son[M][2], sze[M];
void insert(int i, int x){
int now = root[i] = ++idx;
int old = root[i - 1];
for(int i = 31; i >= 0; i--){
sze[now] = sze[old] + 1;
if((x >> i) & 1) son[now][0] = son[old][0], son[now][1] = ++idx;
else son[now][1] = son[old][1], son[now][0] = ++idx;
now = son[now][(x >> i) & 1];
old = son[old][(x >> i) & 1];
}
sze[now] = sze[old] + 1;
}
int query(int l, int r, int x){
int old = root[l], now = root[r], ans = 0;
for(int i = 31; i >= 0; i--){
bool dir = (x >> i) & 1;
int delta_sze = sze[son[now][!dir]] - sze[son[old][!dir]];
if(delta_sze) now = son[now][!dir], old = son[old][!dir], ans = ans << 1 | 1;
else now = son[now][dir], old = son[old][dir], ans = ans << 1;
}
return ans;
}
int main(){
read(n), read(Q);
for(int i = 1; i <= n; i++)
read(a[i]);
for(int i = 1; i <= n; i++)
insert(i, a[i]);
int l, r, x;
while(Q--){
read(x), read(l), read(r);
write(query(l, r + 1, x)), enter;
}
return 0;
}
//P.S. 没看见原题中数组从0开始数,白检查半天……
//错误:数组开小了……要不下次用指针吧……?
本文作者:胡小兔
博客地址:http://rabbithu.cnblogs.com
博客地址:http://rabbithu.cnblogs.com