2017 USP Try-outs 题解

2017 USP Try-outs 题解

A

维护每个点,点权能取到的最小值。然后我们开始dfs,我们用当前所在的节点,更新他的邻居,点权能取到的最小值。

B

权值和为\(n(n+1)/2\),如果权值和为奇数,肯定不行。如果为偶数,我们需要选一些数字凑出\(n(n+1)/4\),从大到小扫一遍,能拿就拿。

C

  • 对于每个位置\(l\),我们可以求出最小的\(r\),使得\([l,r]\)之间有互质的数对。
  • 随着\(l\)的增大,\(r\)一定会增大,因此我们可以考虑尺取。
  • 在右端点进入和左端点退出的时候,我们尝试维护区间内不互质数对的个数\(pair\)
  • 对于\(\mu(x)\neq0\)\(x\),我们用\(cnt[x]\)维护,区间内有多少个数字的因子中有\(x\),然后,没进入一个右端点\(r\)时,那么每个\(d|a[r] 且 \mu(d)\neq0且d\neq1\)\(d\)\(pair\)的贡献为\(-\mu(d)cnt[d]\),把这个贡献加到\(pair\)里去,同理,退出一个又端点的时候,把这个贡献从\(pair\)中减去。

D

  • 我们来求\(x\)最小与最大的端点。
  • 两条直线的交点的横坐标为\(\frac{m_1-m_2}{b_1-b_2}\)
  • \(b\)排序且离散化后,\(b_1,b_2\)的位置,恰好相差一位。

E

  • 样例看不懂,很令人狂躁
  • 先把每个人的时间,从小到大排序。
  • \(dp[i]\)表示前\(i\)个人到达终点的最小耗时。
  • 考虑\(dp[i]\)如何求得,我们可以让\(1\)\(i\)带过去,然后\(1\)回来。也可以\(1\)\(2\)过去,然后\(1\)回来,然后\(i\)\(i-1\)过去,然后\(2\)回来。

F

  • 签到题,然后一堆WA

G

  • 我怎么觉得这题和A一模一样啊

H

  • 模拟

I

  • 正解当然是网络流啦。2008NOI志愿者招募。
  • 但非整数的线性规划居然能过。

J

  • 数位DP,\(dp[i][j][0/1]\)表示前\(i-1\)位放好了,之后放的数字和为\(j\)的方案数。

K

  • 签到题

L

  • 我们用\(dp[i][j]\)来表示,让s.substr(1,i)成为t.substr(1,j)的后缀的最小耗费。
posted @ 2018-09-26 02:47  RUSH_D_CAT  阅读(404)  评论(0编辑  收藏  举报