【Lidar】Open3D点云DBSCAN聚类算法:基于密度的点云聚类(单木分割)附Python代码
1 DBSCAN算法介绍
DBSCAN聚类算法是一种基于密度的聚类算法,全称为“基于密度的带有噪声的空间聚类应用”,英文名称为Density-Based Spatial Clustering of Applications with Noise。
DBSCAN聚类算法能够发现任意形状的类别,并且对噪音数据具有较强的鲁棒性。其基本思想是,如果一个点在给定的邻域内有足够多的相邻点,那么该点就是一个核心点;如果一个点在给定的邻域内没有足够多的相邻点,那么该点就是一个边界点;如果一个点既不是核心点也不是边界点,那么该点就是噪音点。
DBSCAN聚类算法的优点在于,它只需要扫描一遍数据集即可完成聚类,不需迭代执行,因此具有较高的效率。此外,DBSCAN聚类算法可以发现任意形状的簇,而不仅仅是凸形簇。
在实际应用中,DBSCAN聚类算法可以应用于许多领域,如图像处理、文本挖掘、生物信息学等。例如,在图像处理中,可以使用DBSCAN聚类算法对图像进行分割和识别;在文本挖掘中,可以使用DBSCAN聚类算法对文本进行主题分类和情感分析;在生物信息学中,可以使用DBSCAN聚类算法对基因序列进行聚类分析。总之,DBSCAN聚类算法是一种非常实用的聚类算法,可以应用于许多领域。
2 Python代码
我这里使用的是Open3D库自带的DBSCAN算法,主要参数就两个:1、eps: 这是确定邻域的半径。它决定了在考虑一个点是否在某个点的邻域时,我们考虑的范围有多大。2、min_points: 这是构成一个簇所需要的最少点数。如果一个点的邻域中包含的点数少于这个值,那么这个点将被视为噪声点,不会加入任何簇。
3 效果展示
4 总结
总的来说,DBSCAN算法还是不错的,它作为基于欧式距离为基础的密度聚类算法在表现上还可以。但是对于完善地林业单木分割还是有些困难,可能还需要加入其他算法来修正它的结果。其次在DBSCAN算法的参数方面需要好好臻选,如果搜索半径设置的过大程序就会执行很长一段时间!
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· CSnakes vs Python.NET:高效嵌入与灵活互通的跨语言方案对比
· DeepSeek “源神”启动!「GitHub 热点速览」
· 我与微信审核的“相爱相杀”看个人小程序副业
· Plotly.NET 一个为 .NET 打造的强大开源交互式图表库
· 上周热点回顾(2.17-2.23)