【Python&RS】基于GDAL栅格数据/图片位深度(bit)转换
最近在用OpenCv库处理图片时发现cv库无法读取64位的tif影像,所有想通过Python将64位的图片转换成8位的。今天就跟大家分享一下如何利用Python的GDAL库,实现栅格数据/图片的位深度转换。
在数字图像处理中,我们常常会听到不同的位数术语,比如64位、16位和8位。这些位数指的是图像的深度,也就是图像中每个像素可以显示的颜色数。位数越高,图像可以显示的颜色数就越多,图像的质量也就越高。
图片位数是用来描述图像中每个像素可以显示的颜色数的一个指标。它决定了图像中每个像素可以使用的颜色数量,也就是图像的深度。位数越高,图像的深度就越高,可以显示的颜色数也就越多。
一、导入Python库
二、获取影像基础信息
三、位深度转换
这里是通过创建空的数组,将数组的类型设定为8位实现位深度的转换。
这篇文章没有啥能说的,大部分操作都是我之前分享过的,感兴趣的可以看看我之前发的文章顺便再给我点个赞。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了