局部不变特征 转载 https://blog.csdn.net/qican_7/article/details/79431016
局部不变特征
目前绝大多数景物匹配算法提取的都是全局不变特征,它能很好解决同一目标的一致性判决问题,但很难消除图像的成像畸变。当图像之间的成像畸变很复杂时,利用全局信息进行匹配非常困难,特别是存在局部遮挡时,全图特征会随之变化。
基于以上特点,红外图像的匹配识别与跟踪一般都是基于特征的方法,一般都是采用局部不变特征来对红外图像进行处理识别。
局部特征提取,即,将图像整体分割成若干个组成部分,对每一部分提取全局特征。此处的分割并不是我们直观认为的分割,理想情况下,人们总希望局部特征对应客观世界的物体的一部分,但是这是不现实的,往往需要借助图像处理技术对高层场景进行理解。
局部稳定特征有:
- 角点特征
- 边缘特征
- 直线特征
- 纹理特征
- 基于以上特征构建的特征
特征提取步骤:
- 局部不变特征检测:检测特征的位置————检测子算法
- 局部不变特征描述:定量化数据描述方法——描述子算法
不变特征检测算法
- 角点检测算子
- Harris
- SUSAN
- CSS
- FAST(features from accelerated segment test) 等
- 斑点检测算子
- DoG(高斯差分算子)
- Multi-Scale Harris
- SIFT
- SURF等
- 区域检测子
- Salient Region
- EBR
- IBR
- MSER
- Hessian-Affine
- Harrise-Affine等
特征描述算子
特征描述算子是一种图像局部结构特征的定量化数据描述,它应该能充分反应特征点附近图像的形状和纹理结构特性。
一个理想的特征描述子应该具有以下特征:
- 鲁棒性:仿射变换/密度变换/噪声干扰下具有稳定工作的能力
- 独特性:局部结构发生变化时,具有捕获和反应这一变化的能力
- 匹配速度:相似性比较时的运算速度,特征空间维数越高,速度越差
描述子分类:
- 基于图像梯度分布(SIFT)
- 基于空间频率
- 基于微分和不变矩
参考:http://blog.csdn.net/horseinch/article/details/51819448
一花独放不是春,百花齐放春满园!
让机器视觉应用满天下,解放人类的眼睛和大脑!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律