奈奎斯特采样定理 混叠 转载 https://blog.csdn.net/zj15527620802/article/details/81274510
现实世界接触到的诸如电信号、光信号、声音信号等这些信号都是随时间连续变化的,称之为连续信号。但对于计算机来说,处理这些连续的信号显然是无能为力,要使计算机能够识别、计算、处理这些连续信号就必须将其转化为离散信号,将连续信号转换为离散信号的过程就叫采样。常用的mp3、数码照片、视频等都是经过了采样,才能应用于计算机上。
采样后,计算机得到的是离散的点,用这些离散的点来代替连续的线就势必会产生误差,那么这个误差是不是在容许的范围内,根据采样得到离散的点能不能还原出连续的信号?
奈奎斯特采样定理
奈奎斯特采样定理解释了采样率和所测信号频率之间的关系。 阐述了采样率fs必须大于被测信号感兴趣最高频率分量的两倍。 该频率通常被称为奈奎斯特频率fN。
为更好理解其原因,让我们来看看不同速率测量的正弦波。 情况A,频率f的正弦波以同一频率采样。 这些采样标记在原始信号的左侧,在右侧构建时,信号错误地显示为恒定直流电压。 情况B,采样率是信号频率的两倍。 现在信号显示为三角波。 这种情况下,f等于奈奎斯特频率,这也是特定采样频率下为了避免混叠而允许的最高频率分量。 情况C,采样率是4f/3。
采样率过低会造成波形重构不准确。因此,为了无失真地恢复原波形信号,采样率fs必须大于被测信号感兴趣最高频率分量的两倍。 通常希望采样率大于信号频率约五倍。
混叠
如需按一定速率采样以避免混叠,那么混叠到底是什么? 如果信号的采样率低于两倍奈奎斯特频率,采样数据中就会出现虚假的低频成分。 这种现象便称为混叠。
混叠发生在采样率过低的时候,产生不精确的波形显示。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律