[算法练习]最长公共子序列
题目说明:
找两个字符串的最长公共子序列,这个子序列不要求在原字符串中是连续的,但要求顺序是一致的,比如"abcd"和"aebfc"的最长公共子串是"abc"。
程序代码:
#include <gtest/gtest.h> #include <vector> using namespace std; enum DirectionType { TypeUp, TypeLeftUp, TypeLeft }; int TMaxVal(int A, int B, int C, DirectionType& index) { int nVal = A; index = TypeUp; if (B > nVal) { nVal = B; index = TypeLeftUp; } if (C > nVal) { nVal = C; index = TypeLeft; } return nVal; } // 按照上、左上、左的比较顺序 string GetLCS(const string& strA, const string& strB) { int nLengthA = strA.length(); int nLengthB = strB.length(); if (!nLengthA || !nLengthB) { return ""; } struct RecordInfo { char Direction; char Count; }; RecordInfo* arrRecordInfo = new RecordInfo[(nLengthA + 1) * (nLengthB+1)]; memset(arrRecordInfo, 0, (nLengthA + 1) * (nLengthB + 1) * sizeof(RecordInfo)); for (int i = 1; i <= nLengthA; ++i) { for (int j = 1; j <= nLengthB; ++j) { int nNewVal = 0; DirectionType nDirect; if (strA[i-1] == strB[j-1]) { nNewVal = TMaxVal( arrRecordInfo[(i-1)*(nLengthB+1) + j].Count, arrRecordInfo[(i-1)*(nLengthB+1) + j-1].Count + 1, arrRecordInfo[i*(nLengthB+1) + j-1].Count, nDirect); } else { nNewVal = TMaxVal( arrRecordInfo[(i-1)*(nLengthB+1) + j].Count, arrRecordInfo[(i-1)*(nLengthB+1) + j-1].Count, arrRecordInfo[i*(nLengthB+1) + j-1].Count, nDirect); } arrRecordInfo[i*(nLengthB+1) + j].Count = nNewVal; arrRecordInfo[i*(nLengthB+1) + j].Direction = nDirect; } } string strValue; int i = nLengthA; int j = nLengthB; while ((i > 0) && (j > 0)) { int nDirect = arrRecordInfo[i*(nLengthB+1) + j].Direction; if (TypeLeftUp == nDirect) { if (strA[i-1] == strB[j-1]) { strValue += strA[i-1]; } --i; --j; } else if(TypeUp == nDirect) { --i; } else if(TypeLeft == nDirect) { --j; } } reverse(strValue.begin(),strValue.end()); return strValue; } TEST(Algo, tLongestCommonSequence) { // // "" "" // abcdefg bdacafg // abcabcagc abcdcagb vector<string> result; ASSERT_EQ(GetLCS("",""),""); ASSERT_EQ(GetLCS("abcdefg","bdacafg"), "acfg"); }