P7717-「EZEC-10」序列【Trie】
正题
题目链接:https://www.luogu.com.cn/problem/P7717
题目大意
求有多少个长度为\(n\)的序列\(a\)满足,都在\([0,k]\)的范围内且满足\(m\)个限制刑如:\(a_x\ xor\ a_y=z\)
\(0\leq n,m\leq 5\times 10^5,0\leq k<2^{30}\)
解题思路
首先假设有合法方案,那么对于一个位置\(a_x\)确定之后与它直接或间接限制的\(a_y\)都将被确定。
我们可以设限制为一条边,然后先\(dfs\)判断一次是否限制之间没有冲突。
然后考虑对于每个联通块我们随意找到一个位置\(x\),那么其他的点都将被表达为\(a_x\ xor\ w\)的形式。
然后我们要求找到有多少个\(a_x\)满足对于所有的\(w\)都有\(a_x\ xor\ w\leq k\)。
这个可以用\(Trie\)数来做,每次封闭的是一个子树,直接处理就好了。
时间复杂度\(O(n\log k)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#define ll long long
using namespace std;
const ll N=5e5+10,P=1e9+7;
struct node{
ll to,next,w;
}a[N<<1];
ll n,m,k,tot,ls[N],z[N];
ll cnt,t[N][2],res,ans=1;
bool v[N];stack<ll > s;
void addl(ll x,ll y,ll w){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;a[tot].w=w;
return;
}
bool dfs(ll x){
v[x]=1;s.push(z[x]);
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(v[y]){
if((z[x]^a[i].w)!=z[y])
return 1;
}
else{
z[y]=z[x]^a[i].w;
if(dfs(y))return 1;
}
}
return 0;
}
void Limit(ll &x,ll w,ll p){
if(x==-1||p<0)return;
if(!x){x=++cnt;t[x][0]=t[x][1]=0;}
if((k>>p)&1)Limit(t[x][(w>>p)&1^1],w,p-1);
else{
t[x][(w>>p)&1^1]=-1;
Limit(t[x][(w>>p)&1],w,p-1);
}
return;
}
void Count(ll x,ll L,ll R){
if(L>k)return;
if(x==-1)res-=min(R,k)-L+1;
if(x<=0)return;
ll mid=(L+R)>>1;
Count(t[x][0],L,mid);
Count(t[x][1],mid+1,R);
return;
}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=1;i<=m;i++){
ll x,y,w;
scanf("%lld%lld%lld",&x,&y,&w);
addl(x,y,w);addl(y,x,w);
}
res=0;
for(ll i=1;i<=n;i++){
if(v[i])continue;cnt=t[0][0]=0;
if(dfs(i))return puts("0")&0;
while(!s.empty())Limit(t[0][0],s.top(),29),s.pop();
res=k+1;Count(1,0,(1<<30)-1);
ans=ans*res%P;
}
printf("%lld\n",ans);
return 0;
}