[科技]Loj#6564-最长公共子序列【bitset】
正题
题目大意
给两个序列\(a,b\)求它们的最长公共子序列。
\(1\leq n,m,a_i,b_i\leq 7\times 10^4\)
解题思路
无意间看到的一个\(bitset\)科技。
首先设\(f_{i,j}\)表示\(a\)串匹配到第\(i\)个\(b\)串匹配到第\(j\)个时的最长长度,做过\(dp\)套\(dp\)的应该知道\(f_{i,j}\)的性质。
基本的思路就是设\(01\)矩阵\(M\)满足\(f_{i,j}=\sum_{k=1}^jM_{i,k}\)然后用\(bitset\)优化转移
然后考虑一下怎么转移,我们先预处理出\(p\)数组其中\(p_i\)表示数字\(i\)出现的位置集合
我们的转移要把\(M\)中的\(1\)尽量的往前移动并且看能否加上一个新的\(1\)。
假设现在的字符是\(c\),那么我们将使用\(p_c\)进行转移。
我们把\(M\)中每个\(1\)作为结尾分成若干段(最后的\(0\)也是一段,顺序是从低位到高位)。
那么对于一段中如果这一段\(p_c\)有\(1\)那么我们就取最前面的那个\(1\),这样因为前面假设有\(j\)个\(1\)那么这次就匹配\(p_c\)最前面的那个作为\(j+1\)。
但是我们显然不可能一段一段做,我们可以考虑怎么把这个操作转成位运算🤔。
考虑一下我们平时是怎么取一个\(01\)串的第一位的,我们有\(lowbit(x)=((x-1)\ xor\ x)\ and\ x\)对吧。
发现这里每段分开取实际上难实现的地方只有\(x-1\),考虑怎么实现这个问题。
因为\(1\)是段的末尾,所以每一段的开头前面都是\(1\),所以如果我们让\(M\)左移一位那么就变成开头是\(1\)了(需要注意补上第一段的\(1\),所以应该是\((M<<1)+1\))
最后来说是
这样我们就完成了\(M\)的转移,因为需要位运算,所以需要手写\(bitset\)。
时间复杂度\(O(\frac{nm}{\omega})\)
我是看这篇博客学的,看不懂的可以去看下:https://www.cnblogs.com/-Wallace-/p/bit-lcs.html
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ull unsigned long long
using namespace std;
const int N=7e4+10;
int n,m,L;
struct bitset{
ull t[N/64+5];
bitset(){memset(t,0,sizeof(t));return;}
void set(int p){
t[p>>6]|=(1ull<<(p&63));
return;
}
void shift(){
ull last=0;
for(int i=0;i<L;i++){
ull cur=t[i]>>63;
(t[i]<<=1)|=last;
last=cur;
}
return;
}
int count(){
int ans=0;
for(int i=0;i<L;i++)
{ull x=t[i];while(x)x-=(x&-x),ans++;}
return ans;
}
bitset& operator=(const bitset &b)
{memcpy(t,b.t,sizeof(t));return *this;}
bitset& operator|=(const bitset &b){
for(int i=0;i<L;i++)t[i]|=b.t[i];
return *this;
}
bitset& operator&=(const bitset &b){
for(int i=0;i<L;i++)t[i]&=b.t[i];
return *this;
}
bitset& operator^=(const bitset &b){
for(int i=0;i<L;i++)t[i]^=b.t[i];
return *this;
}
}p[N],f,g;
bitset operator-(const bitset &a,const bitset &b){
bitset tmp;ull last=0;
for(int i=0;i<L;i++){
ull cur=(a.t[i]<b.t[i]+last);
tmp.t[i]=a.t[i]-b.t[i]-last;
last=cur;
}
return tmp;
}
int main()
{
scanf("%d%d",&n,&m);L=(n>>6)+1;
for(int i=1,c;i<=n;i++)
scanf("%d",&c),p[c].set(i);
for(int i=1,c;i<=m;i++){
scanf("%d",&c);
(g=f)|=p[c];
f.shift();f.set(0);
f=g-f;f^=g;f&=g;
}
printf("%d",f.count());
return 0;
}