P5540-[BalkanOI2011]timeismoney|最小乘积生成树【最小生成树,凸壳】
正题
题目链接:https://www.luogu.com.cn/problem/P5540
题目大意
给出\(n\)个点\(m\)条边边权是一个二元组\((a_i,b_i)\),求出一棵生成树最小化
\[(\sum_{e\in T}a_e)\times(\sum_{e\in T}b_e)
\]
的情况下最小化\(\sum_{e\in T}a_e\)
\(1\leq n\leq 200,1\leq m\leq 10^4\)
解题思路
这种带乘积的可以维护凸壳,对于一棵生成树\(T\)我们视为一个\((\sum_{e\in T}a_e,\sum_{e\in T}b_i)\)的点,这样我们打答案一定在下凸壳上。
可以用一种分治求凸壳的方法,我们先找出下凸壳的两个端点(\(x\)最小的和\(y\)最小的)记为\(A,B\),然后找到一个在\(A\)与\(B\)的连边下面的一个最凸的点\(C\)(可以视为最大化\(S_{\bigtriangleup ACB}\),这样\(C\)一定在凸壳上),然后分治下去做\(\vec{AC}\)和\(\vec{CB}\)。
考虑怎么求这个\(C\),就是最大化\(\vec{AC}\times \vec{CB}\)
\[(x_C-x_A)(y_B-y_A)-(x_B-x_A)(y_C-y_A)
\]
\[=x_C(y_B-y_A)-y_C(x_B-x_A)+y_A(x_B-x_A)-x_A(y_B-y_A)
\]
然后就是相当于最小化\(x_C(y_B-y_A)+y_C(x_A-x_B)\),拿这个当边权跑就可以跑出\(C\)了。
然后时间复杂度据说是\(O(m\log m\sqrt{\ln n!})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=210,M=1e4+10;
struct node{
ll x,y,w,id;
}e[M];
struct point{
ll x,y;
point(ll xx=0,ll yy=0)
{x=xx;y=yy;return;}
}ans;
ll n,m,x[M],y[M],a[M],b[M],fa[N];
point operator-(point x,point y)
{return point(x.x-y.x,x.y-y.y);}
ll operator*(point x,point y)
{return x.x*y.y-x.y*y.x;}
bool cmp(node x,node y)
{return (x.w==y.w)?(a[x.id]<a[y.id]):(x.w<y.w);}
ll find(ll x)
{return (fa[x]==x)?x:(fa[x]=find(fa[x]));}
point Kruskal(){
ll cnt=0;point res=0;
for(ll i=1;i<=n;i++)fa[i]=i;
sort(e+1,e+1+m,cmp);
for(ll i=1;i<=m;i++){
ll x=find(e[i].x),y=find(e[i].y);
if(x==y)continue;
fa[x]=y;cnt++;
res.x+=a[e[i].id];
res.y+=b[e[i].id];
if(cnt==n-1)break;
}
if(res.x*res.y<ans.x*ans.y)ans=res;
else if(res.x*res.y==ans.x*ans.y&&res.x<ans.x)
ans=res;
return res;
}
void solve(point A,point B){
for(ll i=1;i<=m;i++)
e[i]=(node){x[i],y[i],(B.x-A.x)*b[i]+(A.y-B.y)*a[i],i};
point C=Kruskal();
if((C-A)*(B-A)<=0)return;
solve(A,C);solve(C,B);
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++){
scanf("%lld%lld%lld%lld",&x[i],&y[i],&a[i],&b[i]);
x[i]++;y[i]++;
}
ans.x=ans.y=1e9;
for(ll i=1;i<=m;i++)e[i]=(node){x[i],y[i],a[i],i};
point A=Kruskal();
for(ll i=1;i<=m;i++)e[i]=(node){x[i],y[i],b[i],i};
point B=Kruskal();
solve(A,B);
printf("%lld %lld\n",ans.x,ans.y);
return 0;
}