YbtOJ#883-最大的割【带修线性基】
正题
题目链接:http://www.ybtoj.com.cn/contest/118/problem/3
解题思路
给出\(n\)个点,\(m\)次动态插入一条无向边询问:割掉一些边使得图中至少两点不连通,并且割掉的边异或和最大。
询问之间相互独立
\(1\leq n\leq 500,1\leq m\leq 1000\)
边权以二进制形式给出,长度不超过\(1000\)
解题思路
要求分隔两个点,看起来很麻烦,其实有个结论。先定义\(w_i\)表示连接\(i\)的所有边的异或和,如果选出了一个点集\(U\)和外面的所有点都隔绝,那么割就是点集\(U\)中所有点的\(w_i\)值异或和。
其实挺显然的,因为如果两个点集中的点\(x,y\)之间的边被异或了两次就抵消掉了。
那么现在问题就变为了每次修改两个数,求最大异或和。
然后就是带修线性基的裸题了,有两种方法
在线做法是先删除再插入,就是开一个0行储存所有的没有成功插入线性基的元素,然后还要对于每个元素维护一个它插入的时候异或了哪些元素。
每次你删除一个元素\(x\)的时候,假设集合\(S\)中储存了所有插入的时候异或了\(x\)的元素(包括\(x\)本身),那么我们找出一个最小的\(y\in S\)(异或后),让所有\(S\)中的其他元素异或上\(y\)之后再将\(y\ xor\ c\)插入(\(c\)表示你要让\(x\)异或的值)
此时就相当于你将之前插入\(x\)时本应该异或的数变成了异或\(x\ xor\ c\)的,选出最小的\(y\)防止对后面的元素产生影响,然后修改后让\(y\)代替\(x\)成为新的主元插入。
加一个\(bitset\)优化,时间复杂度\(O(\frac{m(n+L)L}{w})\)
离线的做法是线段树分治,一个\(x\)的取值会被分为不同的时间段,每次将\(x\)的固定的时间段插入到线段树的对应区间,然后分治下去的时候维护一个撤销线性基就好了。
时间复杂度\(O(\frac{mL^2\log m}{w})\)(也许?)
这里写的是在线的做法
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
using namespace std;
const int N=1010;
bitset<N>w[N],v[N],c,ans;
int n,m,p[N];char s[N];
void Insert(int x){
for(int i=N-1;i>=0;i--)
if(w[x][i]){
if(p[i])w[x]^=w[p[i]],v[x]^=v[p[i]];
else{p[i]=x;return;}
}
return;
}
void Change(int x){
int pos=0;
for(int i=1;i<=n;i++)
if(v[i][x]&&!w[i].any()){pos=i;break;}
if(!pos)
for(int i=0;i<N;i++)
if(p[i]&&v[p[i]][x]){pos=p[i];p[i]=0;break;}
for(int i=1;i<=n;i++)
if(v[i][x]&&i!=pos)
w[i]^=w[pos],v[i]^=v[pos];
w[pos]^=c;
Insert(pos);return;
}
int main()
{
freopen("cut.in","r",stdin);
freopen("cut.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)v[i][i]=1;
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);scanf("%s",s);
int l=strlen(s);c.reset();
for(int j=0;j<l;j++)c[j]=s[l-j-1]-'0';
Change(x);
Change(y);bool flag=0;
ans.reset();
for(int i=N-1;i>=0;i--){
if(p[i]&&!ans[i])ans^=w[p[i]];
if(ans[i])flag=1;
if(flag)printf("%d",ans[i]?1:0);
}
if(!flag)puts("0");
else putchar('\n');
}
return 0;
}