YbtOJ#463-序列划分【二分答案,线段树,dp】
正题
题目链接:https://www.ybtoj.com.cn/problem/463
题目大意
给出长度为\(n\)的序列\(A,B\)。要求划分成若干段满足
- 对于任何\(i<j\),若\(i\)和\(j\)不是同一段的,要求满足\(B_i>A_j\)
- 每一段\(A_i\)的最大值的和不能超过\(m\)
要求最小化每一段\(B_i\)和的最大值。
\(n\in[1,10^5],A_i,B_i\in[1,10^9],m\in[1,10^{12}]\)
解题思路
最大值最小化很显然直接二分,然后变为求每一段\(A_i\)最大值的和的最小值。
第一个条件相当于限制了什么位置能够作为划分段的末尾,求一个前缀\(min\{b_i\}\)和一个后缀\(max\{a_i\}\)能够快速求出这些位置。
然后考虑\(dp\),转移方程就是
\[f_i=min\{f_j+max\{a_k\}(\ k\in(j,i]\ )\}
\]
二分的条件限制了\(j\)的范围,加个指针就好了
这个东西好像很难搞,但是注意到\(v_j=max\{a_k\}\)这一部分是递减的,并且每次会让所有\(v_i\)的一起和一个一起取\(max\)。
因为是递减的,所以每次加入一个新的就相当于修改一段后缀的\(v_i\),然后求一个区间的最大\(f_i+v_i\)了。
可以线段树维护,每个节点维护该区间最大的\(f_i+v_i\)和最大的\(f_i\)。区间推平\(v_i\)的时候就可以拿最大的\(f_i\)来更新\(f_i+v_i\)
时间复杂度\(O(n\log n\log\sum b_i)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10,inf=1e9+7;
ll n,m,a[N],b[N],pre[N],suf[N],last[N];
ll lg[N],st[N][17],v[N<<2],w[N<<2],lazy[N<<2];
void Downdata(ll x){
if(!lazy[x])return;
lazy[x*2]=lazy[x*2+1]=lazy[x];
w[x*2]=v[x*2]+lazy[x];
w[x*2+1]=v[x*2+1]+lazy[x];
lazy[x]=0;return;
}
void Changew(ll x,ll L,ll R,ll l,ll r,ll val){
if(l>r)return;
if(L==l&&R==r){w[x]=v[x]+val;lazy[x]=val;return;}
ll mid=(L+R)>>1;Downdata(x);
if(r<=mid)Changew(x*2,L,mid,l,r,val);
else if(l>mid)Changew(x*2+1,mid+1,R,l,r,val);
else Changew(x*2,L,mid,l,mid,val),Changew(x*2+1,mid+1,R,mid+1,r,val);
w[x]=min(w[x*2],w[x*2+1]);
}
void Changev(ll x,ll l,ll r,ll pos,ll val){
if(l==r){v[x]=val;w[x]=v[x]+lazy[x];return;}
ll mid=(l+r)>>1;Downdata(x);
if(pos<=mid)Changev(x*2,l,mid,pos,val);
else Changev(x*2+1,mid+1,r,pos,val);
w[x]=min(w[x*2],w[x*2+1]);
v[x]=min(v[x*2],v[x*2+1]);
return;
}
ll Ask(ll x,ll L,ll R,ll l,ll r){
if(L==l&&R==r)return w[x];
ll mid=(L+R)>>1;Downdata(x);
if(r<=mid)return Ask(x*2,L,mid,l,r);
if(l>mid)return Ask(x*2+1,mid+1,R,l,r);
return min(Ask(x*2,L,mid,l,mid),Ask(x*2+1,mid+1,R,mid+1,r));
}
ll RMQ(ll l,ll r){
ll z=lg[r-l+1];
return max(st[l][z],st[r-(1<<z)+1][z]);
}
bool check(ll x){
memset(v,0x3f,sizeof(v));
memset(w,0x3f,sizeof(w));
memset(lazy,0,sizeof(lazy));
ll sum=0,l=0,tmp=v[0];
Changev(1,0,n,0,0);
for(ll i=1;i<=n;i++){
sum+=b[i];
while(sum>x)l++,sum-=b[l];
Changew(1,0,n,last[i],i-1,a[i]);
if(pre[i]<=suf[i+1])continue;
tmp=Ask(1,0,n,l,i);
Changev(1,0,n,i,tmp);
}
return (tmp<=m);
}
signed main()
{
freopen("sequence.in","r",stdin);
freopen("sequence.out","w",stdout);
scanf("%lld%lld",&n,&m);
ll l=1,r=0;pre[0]=inf;
for(ll i=1;i<=n;i++)
scanf("%lld%lld",&a[i],&b[i]),r+=b[i],l=max(l,b[i]),st[i][0]=a[i];
for(ll i=2;i<=n;i++)lg[i]=lg[i>>1]+1;
for(ll j=1;(1<<j)<=n;j++)
for(ll i=1;i+(1<<j)-1<=n;i++)
st[i][j]=max(st[i][j-1],st[i+(1<<j-1)][j-1]);
for(ll i=1;i<=n;i++){
ll l=1,r=i-1;
while(l<=r){
ll mid=(l+r)>>1;
if(RMQ(mid,i)>a[i])l=mid+1;
else r=mid-1;
}
last[i]=r;
}
for(ll i=1;i<=n;i++)
pre[i]=min(pre[i-1],b[i]);
for(ll i=n;i>=1;i--)
suf[i]=max(suf[i+1],a[i]);
while(l<=r){
ll mid=(l+r)>>1;
if(check(mid))r=mid-1;
else l=mid+1;
}
check(l+1);
printf("%lld\n",l);
}