CF803G-Periodic RMQ Problem【离散化,线段树,ST表】

正题

题目链接:https://www.luogu.com.cn/problem/CF803G


题目大意

一个长度为\(n\)的序列\(a\)复制\(k\)份连接,要求支持

  1. 区间赋值
  2. 区间查询最小值

\(n,q\in[1,10^5],k\in[1,10^4]\)


解题思路

先把所有查询的连续区间边界离散化了,这样最多有\(2q-1\)个区间,每个区间用\(ST\)查询最小值代替,然后建一个线段树操作即可。

也不知道怎么黑的

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+10,inf=1e9+7;
int n,m,cnt,f[N][20],l[N],r[N],c[N],op[N];
int b[N<<1],w[N<<3],lazy[N<<3],lg[N];
int RMQ(int l,int r){
	if(l>r)return inf;
	int z=lg[r-l+1];
	return min(f[l][z],f[r-(1<<z)+1][z]);
}
void Downdata(int x){
	if(!lazy[x])return;
	w[x*2]=lazy[x*2]=lazy[x];
	w[x*2+1]=lazy[x*2+1]=lazy[x];
	lazy[x]=0;return;
}
void Change(int x,int L,int R,int l,int r,int val){
	if(L==l&&R==r){lazy[x]=w[x]=val;return;}
	int mid=(L+R)>>1;Downdata(x);
	if(r<=mid)Change(x*2,L,mid,l,r,val);
	else if(l>mid) Change(x*2+1,mid+1,R,l,r,val);
	else Change(x*2,L,mid,l,mid,val),Change(x*2+1,mid+1,R,mid+1,r,val);
	w[x]=min(w[x*2],w[x*2+1]);return;
}
int Ask(int x,int L,int R,int l,int r){
	if(L==l&&R==r)return w[x];
	int mid=(L+R)>>1;Downdata(x);
	if(r<=mid)return Ask(x*2,L,mid,l,r);
	if(l>mid)return Ask(x*2+1,mid+1,R,l,r);
	return min(Ask(x*2,L,mid,l,mid),Ask(x*2+1,mid+1,R,mid+1,r));
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=0;i<n;i++)scanf("%d",&f[i][0]);
	for(int i=2;i<=n;i++)lg[i]=lg[i>>1]+1;
	for(int j=1;(1<<j)<=n;j++)
		for(int i=0;i+(1<<j)<=n;i++)
			f[i][j]=min(f[i][j-1],f[i+(1<<j-1)][j-1]);
	scanf("%d",&m);
	for(int i=1;i<=m;i++){
		scanf("%d%d%d",&op[i],&l[i],&r[i]);
		if(op[i]==1)scanf("%d",&c[i]);l[i]--;
		b[++cnt]=l[i];b[++cnt]=r[i];
	}
	sort(b+1,b+1+cnt);
	cnt=unique(b+1,b+1+cnt)-b-2;
	for(int i=1;i<=cnt;i++){
		int l=b[i],r=b[i+1]-1;
		if(r-l>=n)Change(1,1,cnt,i,i,RMQ(0,n-1));
		else{
			l%=n;r%=n;
			if(l<=r)Change(1,1,cnt,i,i,RMQ(l,r));
			else Change(1,1,cnt,i,i,min(RMQ(0,r),RMQ(l,n-1)));
		}
	}
	for(int i=1;i<=m;i++){
		l[i]=lower_bound(b+1,b+2+cnt,l[i])-b;
		r[i]=lower_bound(b+1,b+2+cnt,r[i])-b-1;
		if(op[i]==1)Change(1,1,cnt,l[i],r[i],c[i]);
		else printf("%d\n",Ask(1,1,cnt,l[i],r[i]));
	}
	return 0;
}
posted @ 2021-02-15 16:47  QuantAsk  阅读(31)  评论(0编辑  收藏  举报