P3645-[APIO2015]雅加达的摩天楼【bfs,根号分治】
正题
题目链接:https://www.luogu.com.cn/problem/P3645
题目大意
\(n\)个点,\(m\)条狗,第\(i\)条狗可以往左或者右跳恰好\(p_i\)步,开始是\(0\)号狗,每次跳跃到达一个点可以选择换一条狗,求到\(1\)号狗所在点的最短路。
解题思路
为了方便设\(n,m\)同级
对于\(p_i\leq \sqrt n\)的狗,\(p_i\)的种类只有\(\sqrt n\)级别,每条狗能到达的点是\(O(n)\)级别
对于\(p_i>\sqrt n\)的狗,\(p_i\)的种类有\(O(n)\)级别,每条狗能到达的点数是\(O(\sqrt n)\)级别。
所以总共的状态数不超过\(O(n\sqrt n)\)个,暴力\(bfs\)就好了。
对于储存状态可以按照\(\sqrt n\)为分界用两种不同的方式储存,当然还有更暴力的方法就是直接用\(bitset\)存。
时间复杂度\(O(n\sqrt n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<bitset>
#include<vector>
#define mp(x,y) make_pair(x,y)
using namespace std;
const int N=3e4+10;
int n,m,S,T;
bitset<N>v[N];
vector<int>s[N];
queue<pair<pair<int,int> ,int> >q;
int bfs(){
for(int i=0;i<s[S].size();i++)
q.push(mp(mp(S,s[S][i]),0)),v[S][s[S][i]]=1;
while(!q.empty()){
int x=q.front().first.first,w=q.front().first.second,d=q.front().second;
int y=x-w;
if(y>=0){
if(y==T)return d+1;
for(int i=0;i<s[y].size();i++)
if(!v[y][s[y][i]])
q.push(mp(mp(y,s[y][i]),d+1)),v[y][s[y][i]]=1;
if(!v[y][w])q.push(mp(mp(y,w),d+1)),v[y][w]=1;
}
y=x+w;
if(y<n){
if(y==T)return d+1;
for(int i=0;i<s[y].size();i++)
if(!v[y][s[y][i]])
q.push(mp(mp(y,s[y][i]),d+1)),v[y][s[y][i]]=1;
if(!v[y][w])q.push(mp(mp(y,w),d+1)),v[y][w]=1;
}
q.pop();
}
return -1;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
int x,w;
scanf("%d%d",&x,&w);
if(i==0)S=x;
if(i==1)T=x;
s[x].push_back(w);
}
if(S==T)return puts("0")&0;
printf("%d\n",bfs());
return 0;
}