P4718-[模板]Pollard-Rho算法
正题
题目链接:https://www.luogu.com.cn/problem/P4718
题目大意
给出一个数,如果它是质数则输出,否则输出它的最大质因子。
解题思路
算法的前置知识是。在使用判掉质数之后,使用基于随机的思想能够较快的求出一个大数的因子之一。
朴素的随机算法就是随机一个数判断它是不是因子,我们先使用一个较为优秀的随机方式,(其中为一个常数)。
然后我们利用在这个函数上“跑”的距离来判断,也就是每次拿某两个,判断是否为它的因数。
但是如果枚举的话函数上会出现一些“环”,我们需要快速的判掉“环”的方法。每次拿,令,若环长为,那么有,当某一时刻那么环长一定是的整数倍。
然后判到环就退出,如果没有找到就换一个常数重新做,这样的我们的算法雏形就形成了。
但是这样还是跑的很慢,发现我们在过程中大量调用了导致时间变慢。考虑优化,我们可以每次先做一堆,然后在把这一堆拿过去一起搞定。首先我们有,然后根据的原理,我们有那么也就是我们有。
那么假设我们有若干个间隔那么我们把这数乘起来模,然后把得到的结果与取就等价于拿中逐个取与取。
所以我们的优化方法就是第次拿个间隔去一起与判断,但是因为后面会很大导致副作用,所以将设一个上界即可。
时间复杂度期望是,但跑的飞快
回到这题来,我们先对用判断一次质数,然后跑弄出一个因子,之后将的因子都去光后分别把和丢下去递归继续跑。可以记录一个目前最大质因子来剪去一些不优状态。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
const ll pri[10]={2,3,5,7,11,13,17,19,23,27};
ll T,n,ans;
ll ksc(ll a,ll b,ll p){
ll c=(long double)a*b/p;
long double ans=a*b-c*p;
if(ans<0)ans+=p;
else if(ans>=p)ans-=p;
return ans;
}
ll power(ll x,ll b,ll p){
ll ans=1;
while(b){
if(b&1)ans=ksc(ans,x,p);
x=ksc(x,x,p);b>>=1;
}
return ans;
}
bool Mr(ll p){
if(p==2)return 1;
if(p<2||!(p&1))return 0;
ll t=p-1,s=0;
while(!(t&1))t>>=1,s++;
for(ll i=0;i<10&&pri[i]<p;i++){
ll x=power(pri[i],t,p),k;
for(ll j=0;j<s;j++){
k=ksc(x,x,p);
if(k==1&&x!=1&&x!=p-1)
return 0;
x=k;
}
if(x!=1)return 0;
}
return 1;
}
ll gcd(ll a,ll b)
{return (!b)?a:gcd(b,a%b);}
ll Pr(ll p){
ll s=0,t=0,c=1ll*rand()%(p-1)+1;
for(ll g=1,val=1,d;;g<<=1,s=t,val=1){
for(ll j=0;j<g;j++){
t=(ksc(t,t,p)+c)%p;
val=ksc(val,abs(t-s),p);
if(j%127==0&&(d=gcd(p,val))>1)
return d;
}
d=gcd(p,val);
if(d>1)return d;
}
return p;
}
void solve(ll n){
if(n<ans||n<2)return;
if(Mr(n)){ans=n;return;}
ll d=0;
while((d=Pr(n))>=n);
while(n%d==0)n/=d;
solve(n);solve(d);
return;
}
signed main()
{
srand(998244353);
scanf("%lld",&T);
while(T--){
scanf("%lld",&n);
if(Mr(n)){
printf("Prime\n");
continue;
}
ans=0;solve(n);
printf("%lld\n",ans);
}
return 0;
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】博客园携手 AI 驱动开发工具商 Chat2DB 推出联合终身会员
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET 依赖注入中的 Captive Dependency
· .NET Core 对象分配(Alloc)底层原理浅谈
· 聊一聊 C#异步 任务延续的三种底层玩法
· 敏捷开发:如何高效开每日站会
· 为什么 .NET8线程池 容易引发线程饥饿
· 终于决定:把自己家的能源管理系统开源了!
· [.NET] 使用客户端缓存提高API性能
· 外部H5唤起常用小程序链接规则整理
· C#实现 Winform 程序在系统托盘显示图标 & 开机自启动
· WPF 怎么利用behavior优雅的给一个Datagrid添加一个全选的功能