我用python爬取了知乎Top沙雕问题排行榜

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

作者: 数据森麟

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef

这两天偶然上网的时候,被知乎上一个名为“玉皇大帝住在平流层还是对流层”的问题吸引,本以为只是小打小闹,殊不知这个问题却在知乎上引发了强烈共鸣,浏览次数500W+,7000+关注: 在这里插入图片描述

数据来源

知乎非常“贴心”地专门有一个问题可以满足我们的需求,出人意料的是这个问题居然有243个回答,并且陶飞同学获得了3W+的赞同

在这里插入图片描述

我们从中爬取了所有回答中出现的问题链接,共用400多个问题,其中陶飞就提供了200+,在此向陶飞同学表示感谢,帮助我们构建了“沙雕数据库”,这部分代码如下:

 1 import re
 2 import selenium
 3 from selenium import webdriver
 4 import requests
 5 from bs4 import BeautifulSoup
 6 import pandas as pd
 7 import time
 8  9 driver = webdriver.Chrome()
10 driver.maximize_window()
11 12 url = 'https://www.zhihu.com/question/37453271'
13 js='window.open("'+url+'")'
14 driver.execute_script(js)
15 driver.close()
16 driver.switch_to_window(driver.window_handles[0])
17 for i in range(100):
18      js="var q=document.documentElement.scrollTop=10000000"  
19      driver.execute_script(js)
20 21 all_html = [k.get_property('innerHTML') for k in driver.find_elements_by_class_name('AnswerItem')]
22 all_text = ''.join(all_html)
23 24 #all_text = all_text.replace('\u002F','/')
25 all_text = all_text.replace('questions','question')
26 pat = 'question/\d+'
27 questions = list(set([k for k in re.findall(pat,all_text)]))

 

获得到了问题的对应的编号后,就可以去各自的页面获取各个问题对应的的标题、浏览数等信息,如下图所示: 在这里插入图片描述

这部分代码如下:

 1 header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win32; x32; rv:54.0) Gecko/20100101 Firefox/54.0',
 2 'Connection': 'keep-alive'}
 3 cookies ='v=3; iuuid=1A6E888B4A4B29B16FBA1299108DBE9CDCB327A9713C232B36E4DB4FF222CF03; webp=true; ci=1%2C%E5%8C%97%E4%BA%AC; __guid=26581345.3954606544145667000.1530879049181.8303; _lxsdk_cuid=1646f808301c8-0a4e19f5421593-5d4e211f-100200-1646f808302c8; _lxsdk=1A6E888B4A4B29B16FBA1299108DBE9CDCB327A9713C232B36E4DB4FF222CF03; monitor_count=1; _lxsdk_s=16472ee89ec-de2-f91-ed0%7C%7C5; __mta=189118996.1530879050545.1530936763555.1530937843742.18'
 4 cookie = {}
 5 for line in cookies.split(';'):
 6     name, value = cookies.strip().split('=', 1)
 7     cookie[name] = value
 8  9 questions_df = pd.DataFrame(columns = ['title','visit','follower','answer','is_open'])
10 11 for i in range(len(questions)):
12     try:
13         url = 'https://www.zhihu.com/'+questions[i]
14         html = requests.get(url,cookies=cookie, headers=header).content
15         bsObj = BeautifulSoup(html.decode('utf-8'),"html.parser")
16         text = str(bsObj)
17         title = bsObj.find('h1',attrs={'class':'QuestionHeader-title'}).text
18         visit = int(re.findall('"visitCount":\d+',text)[0].replace('"visitCount":',''))
19         follower = int(re.findall('"followerCount":\d+',text)[0].replace('"followerCount":',''))
20         answer = int(re.findall('"answerCount":\d+',text)[0].replace('"answerCount":',''))
21         is_open = int(len(re.findall('问题已关闭',text))==0)
22         questions_df = questions_df.append({'title':title,'visit':visit,
23                                             'follower':follower,'answer':answer,
24                                             'is_open':is_open},ignore_index=True)
25         time.sleep(2)
26         print(i)
27     except:
28         print('错误'+str(i))

 

数据分析

在分享出最终的“沙雕排行榜”前,我们首先严肃认真(lixinggongshi)的进行一波分析,主要看一下问题中的关键词,首先是所有词云的词云: 在这里插入图片描述

看来这些问题大多是源自于大家对于人生的探索,否则“为什么”,“如果”,“怎么办”也不会出现那么多,出人意料的是“体验”这个知乎专属tag居然并不多,可能是出于对知乎的尊重,和“体验”相关的问题都不会问得那么“沙雕”。

下面把这些助词去掉,再来看下结果:

在这里插入图片描述

这个图看来,读者关注的问题还是很极端,一方面在关注男女朋友“你冷酷、你无情、你无理取闹”这种问题,另一方面却在关注宇宙、地球这种关乎全人类的问题,很符合知乎“人均985,各个过百万”的人设。

这两个图实际上都是基于一个表情,不知道有没有看出来:

在这里插入图片描述

好吧,其实看不出来才是正常,能看出来的可能现在去知乎提个问题,下期就会上榜,最后把部分问题做出词云:

在这里插入图片描述

不知道大家能不能看清,说实话我自己是看不清的,也没准备让大家看清,目的就是引出下面真正的排行榜

沙雕问题排行榜

通过综合问题观看数,关注数,回答数,关注占比,回答占比,综合得到分数的流量指数和新奇指数,最终获得一个整体的分数,如下图所示: 在这里插入图片描述

听起来是不是很复杂,实际上最终还是通过90%10%的数据+10%90%的主观来进行了排名,为大家精选了15个最为“沙雕”的问题,

posted @ 2019-11-23 14:36  有趣的Python  阅读(765)  评论(0编辑  收藏  举报