抖音美女千千万,想用Python爬爬看

前言

文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

作者: 星安果、AirPython

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef

目 标 场 景

相信大家平时刷抖音短视频的时候,看到颜值高的小姐姐,都有随手点赞关注的习惯。

如果一条条去刷确实很耗时间,如果 Python 能帮忙筛选出颜值高的小姐姐那就省了很多事。

本篇文章是借助「百度人脸识别」API,帮我们识别出抖音上颜值高的小姐姐,然后下载到手机相册中。

准 备 工 作

首先,项目需要对页面元素进行一些精准的操作,需要提前准备一部 Android 设备,激活开发者选项,并在开发者选项中打开 「USB 调试和指针位置」两处设置。

为了确保 adb 命令能正常使用,需要提前配置好 adb 开发环境。

页面元素中的部分元素没法利用 name 等常用属性获取到,可能需要获取到完整的「UI 树」,再利用 Airtest 判断是否存在某个 UI 元素。

# 安装依赖
pip3 install pocoui

另外,项目中会对视频进行人脸识别,获取到出现的所有人脸,再进行性别识别及颜值判断。

这里需要进行百度云后台,注册一个人脸识别的应用,获取到一组 「API Key 和 Secret Key」值。 在这里插入图片描述

然后利用官网提供的 API 文档即可获取到「access token」,由于 ak 的有效期为一个月,所以只需要初始化一次,后面就可以利用人脸识别接口进行正常的识别了。

 1 appid = '你注册应用的appid'
 2 api_key = '你注册应用的ak'
 3 secret_key = '你注册应用的sk'
 4  5 def get_access_token():
 6     """
 7      其关access_token有效期一般有一个月
 8     """
 9     # 此变量赋值成自己API Key的值
10     client_id = api_key  
11 12     # 此变量赋值成自己Secret Key的值
13     client_secret = secret_key  
14 15     auth_url = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + client_id + '&client_secret=' + client_secret
16 17     header_dict = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko',
18                    "Content-Type": "application/json"}
19 20     # 请求获取到token的接口
21     response_at = requests.get(auth_url, headers=header_dict)
22     json_result = json.loads(response_at.text)
23     access_token = json_result['access_token']
24     return access_token

 

编 写 脚 本

在上面已经配置好了 adb 环境的情况下,可以直接借助 python 中的 os 模块执行 adb 命令打开抖音 App。

 1 # 抖音App的应用包名和初始Activity
 2 package_name = 'com.ss.android.ugc.aweme'
 3 activity_name = 'com.ss.android.ugc.aweme.splash.SplashActivity'
 4  5 def start_my_app(package_name, activity_name):
 6     """
 7     打开应用
 8     adb shell am start -n com.tencent.mm/.ui.LauncherUI
 9     :param package_name:
10     :return:
11     """
12     os.popen('adb shell am start -n %s/%s' % (package_name, activity_name))

 

接着,我们需要截取当前播放视频的截图到本地。 需要注意的是,抖音视频播放界面包含视频创作者头像、BGM 创作者头像等一些杂乱的元素,可能对人脸识别的结果产生一些误差,所以需要对屏幕截图之后的图像进行「二次裁剪」处理。

 1 def get_screen_shot_part_img(image_name):
 2     """
 3     获取手机截图的部分内容
 4     :return:
 5     """
 6     # 截图
 7     os.system("adb shell /system/bin/screencap -p /sdcard/screenshot.jpg")
 8     os.system("adb pull /sdcard/screenshot.jpg %s" % image_name)
 9 10     # 打开图片
11     img = Image.open(image_name).convert('RGB')
12 13     # 图片的原宽、高(1080*2160)
14     w, h = img.size
15 16     # 截取部分,去掉其头像、其他内容杂乱元素
17     img = img.crop((0, 0, 900, 1500))
18 19     img.thumbnail((int(w / 1.5), int(h / 1.5)))
20 21     # 保存到本地
22     img.save(image_name)
23 24     return image_name

 

现在可以使用百度提供的 API 获取到上面截图的人脸列表。

 1 def parse_face_pic(pic_url, pic_type, access_token):
 2     """
 3     人脸识别
 4     5秒之内
 5     :param pic_url:
 6     :param pic_type:
 7     :param access_token:
 8     :return:
 9     """
10     url_fi = 'https://aip.baidubce.com/rest/2.0/face/v3/detect?access_token=' + access_token
11 12     # 调用identify_faces,获取人脸列表
13     json_faces = identify_faces(pic_url, pic_type, url_fi)
14 15     if not json_faces:
16         print('未识别到人脸')
17         return None
18     else:
19         # 返回所有的人脸
20         return json_faces

 

从上述的人脸列表中筛选出性别为女,年龄为 18-30 岁之间,颜值超过 70 的小姐姐。

 1 def analysis_face(face_list):
 2     """
 3     分析人脸,判断颜值是否达标
 4     18-30之间,女,颜值大于80
 5     :param face_list:识别的脸的列表
 6     :return:
 7     """
 8     # 是否能找到高颜值的美女
 9     find_belle = False
10     if face_list:
11         print('一共识别到%d张人脸,下面开始识别是否有美女~' % len(face_list))
12         for face in face_list:
13             # 判断是男、女
14             if face['gender']['type'] == 'female':
15                 age = face['age']
16                 beauty = face['beauty']
17 18                 if 18 <= age <= 30 and beauty >= 70:
19                     print('颜值为:%d,及格,满足条件!' % beauty)
20                     find_belle = True
21                     break
22                 else:
23                     print('颜值为:%d,不及格,继续~' % beauty)
24                     continue
25             else:
26                 print('性别为男,继续~')
27                 continue
28     else:
29         print('图片中没有发现人脸.')
30 31     return find_belle

 

由于视频是连续播放的,很难通过截取视频某一帧,判断视频有出现颜值高的小姐姐。

另外,大部分短视频播放时长为「10s+」,这里需要对每一个视频多次截图去做人脸识别,直到识别到颜值高的小姐姐。

 1 # 一条视频最长的识别时间
 2 RECOGNITE_TOTAL_TIME = 10 
 3 # 识别次数
 4 recognite_count = 1
 5  6 # 对当前视频截图去人脸识别
 7 while True:
 8   # 获取截图
 9   print('开始第%d次截图' % recognite_count)
10 11   # 截取屏幕有用的区域,过滤视频作者的头像、BGM作者的头像
12   screen_name = get_screen_shot_part_img('images/temp%d.jpg' % recognite_count)
13 14   # 人脸识别
15   recognite_result = analysis_face(parse_face_pic(screen_name, TYPE_IMAGE_LOCAL, access_token))
16 17   recognite_count += 1
18 19   # 第n次识别结束后的时间
20   recognite_time_end = datetime.now()
21 22   # 这一条视频出现了颜值高的小姐姐
23   if recognite_result:
24          pass
25   else:
26          print('超时!!!这是一条没有吸引力的视频!')
27          # 跳出里层循环
28          break

 

一旦当前播放的视频识别出有颜值高的小姐姐,就需要模拟保存视频到本地的操作。

在这里插入图片描述

获取「分享」和「保存本地」两个按钮的坐标位置,依次利用 adb 执行点击操作即可下载视频到本地。

 1 def save_video_met():
 2     """
 3     :return:
 4     """
 5     # 分享
 6     os.system("adb shell input tap 1000 1500")
 7     time.sleep(0.05)
 8  9     # 保存到本地
10     os.system("adb shell input tap 350 1700")

 

另外,由于下载视频的过程是一个耗时操作,在下载进度对话框还未消失之前,需要做一个「模拟等待」的操作。

 1 def wait_for_download_finished(poco):
 2     """
 3     从点击下载,到下载完全
 4     :return:
 5     """
 6 
 7     element = Element()
 8     while True:
 9         # 由于是对话框,不能利用Element类来判断是否存在某个元素来准确处理
10         # element_result = element.findElementByName('正在保存到本地')
11 
12         # 当前页面UI树元素信息
13         # 注意:保存的时候可能会获取元素异常,这里需要抛出,并终止循环
14         # com.netease.open.libpoco.sdk.exceptions.NodeHasBeenRemovedException: Node was no longer alive when query attribute "visible". Please re-select.
15         try:
16             ui_tree_content = json.dumps(poco.agent.hierarchy.dump(), indent=4).encode('utf-8').decode('unicode_escape')
17         except Exception as e:
18             print(e)
19             print('异常,按下载处理~')
20             break
21 
22         if '正在保存到本地' in ui_tree_content:
23             print('还在下载中~')
24             time.sleep(0.5)
25             continue
26         else:
27             print('下载完成~')
28             break

 

在视频保存到本地之后,就可以模拟向上滑动的操作,跳到播放「下一条视频」。 循环上面的操作,即可筛选出所有颜值高的小姐姐,并保存到本地。

1 def play_next_video():
2     """
3     下一个视频
4     从下往上滑动
5     :return:
6     """
7     os.system("adb shell input swipe 540 1300 540 500 100")

 

在脚本一条条刷视频的过程中,可能会遇到一下广告,我们需要对这类视频进行过滤。

 1 def is_a_ad():
 2     """
 3     判断的当前页面上是否是一条广告
 4     :return:
 5     """
 6     element = Element()
 7     ad_tips = ['去玩一下', '去体验', '立即下载']
 8  9     find_result = False
10 11     for ad_tip in ad_tips:
12         try:
13             element_result = element.findElementByName(ad_tip)
14             # 是一条广告,直接跳出
15             find_result = True
16             break
17         except Exception as e:
18             find_result = False
19 20     return find_resul

 

结 果 结 论

运行上面的脚本,会自动打开抖音,对每一条小视频多次进行人脸识别,直到识别到颜值高的小姐姐,保存视频到本地,然后继续刷下一条短视频。 在这里插入图片描述 如果你觉得文章还不错,请大家点赞分享下。你的肯定是我最大的鼓励和支持。

posted @ 2019-11-23 14:01  有趣的Python  阅读(1593)  评论(1编辑  收藏  举报