服务器上安装caffe的过程记录
1. 前言
因为新的实验室东西都是新的,所以在服务器上要自己重新配置CAFFE
这里假设所有依赖包学长们都安装好了,我是没有sudo权限的
服务器的配置:
CUDA 8.0
Ubuntu 16.04 LTS
Tesla K80
2. 安装Caffe
先从GITHUB上CLONE下CAFFE的安装包
git clone https://github.com/BVLC/caffe.git
复制编译配置文件:
cp Makefile.configure.example Makefile.configure
然后按照 http://caffe.berkeleyvision.org/installation.html#compilation 的指示:
- For CPU & GPU accelerated Caffe, no changes are needed.
- For cuDNN acceleration using NVIDIA’s proprietary cuDNN software, uncomment the
USE_CUDNN := 1
switch inMakefile.config
. cuDNN is sometimes but not always faster than Caffe’s GPU acceleration.- For CPU-only Caffe, uncomment
CPU_ONLY := 1
inMakefile.config
.To compile the Python and MATLAB wrappers do
make pycaffe
andmake matcaffe
respectively. Be sure to set your MATLAB and Python paths inMakefile.config
first!
注释掉Makefile中相应行以适应自己的环境:
vi Makefile.configure
然后编译:
make all
make test
make runtest
如果想提高编译速度,可以使用:
make all -j16 make test -j16 make runtest -j16
原因参考:
Speed: for a faster build, compile in parallel by doing
make all -j8
where 8 is the number of parallel threads for compilation (a good choice for the number of threads is the number of cores in your machine).
3. 编译过程中的问题与解决方法
在编译过程中如果遇到hdf5问题,参考如下:[1]
在make all这一步遇到了一些问题,首先是找不到hdf5.h,在Makefile.config中INCLUDE_DIRS后添加/usr/include/hdf5/serial即可继续编译。
src/caffe/layers/hdf5_data_layer.cpp:13:18: fatal error: hdf5.h: No such file or directory
但是此后又出现如下问题,
/usr/bin/ld: cannot find -lhdf5_hl
/usr/bin/ld: cannot find -lhdf5
可以在LIBRARY_DIRS后添加/usr/lib/x86_64-linux-gnu/hdf5/serial/,最终Makefile.config文件对应部分修改如下,
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/
以上的操作保证Caffe编译过程中可以找到hdf5的头文件和共享库文件。
hdf5问题解决后,运行make test -j16
然后遇到很多人都会遇到的问题:
ffe.so.1.0.0*** Aborted at 1502862874 (unix time) try "date -d @1502862874" if you are using GNU date *** PC: @ 0x7f9fd538c428 gsignal *** SIGABRT (@0x42700005a63) received by PID 23139 (TID 0x7f9fdf310780) from PID 23139; stack trace: *** @ 0x7f9fd57313e0 (unknown) @ 0x7f9fd538c428 gsignal @ 0x7f9fd538e02a abort @ 0x7f9fd53ce7ea (unknown) @ 0x7f9fd53d6e0a (unknown) @ 0x7f9fd53da98c cfree @ 0x6fa00b caffe::LayerFactoryTest_TestCreateLayer_Test<>::TestBody() @ 0x9785b3 testing::internal::HandleExceptionsInMethodIfSupported<>() @ 0x971bca testing::Test::Run() @ 0x971d18 testing::TestInfo::Run() @ 0x971df5 testing::TestCase::Run() @ 0x9730cf testing::internal::UnitTestImpl::RunAllTests() @ 0x9733f3 testing::UnitTest::Run() @ 0x4c5b4d main @ 0x7f9fd5377830 __libc_start_main @ 0x4cd8d9 _start @ 0x0 (unknown) Makefile:532: recipe for target 'runtest' failed
找了很久也没找到适合的解决方法,但是学长说RUN TEST不通过也可以正常运行程序,好吧那就先这样,接下来
4. PYTHON接口
编译了PYTHON:
make pycaffe -j16
然后到此结束,下面是训练一下MNIST网络看看CAFFE能不能用:(注意目前是在CAFFE主文件夹下)
sh data/mnist/get_mnist.sh sh examples/mnist/create_mnist.sh sh examples/mnist/train_lenet.sh
等3分钟就会结束
准确率为99.08%
5. Matlab接口
如果要编译Matlab的Caffe接口,需要首先在Makefile.config中修改MATLAB的路径使得路径下有/bin
具体来说,如下图中可以看到当前目录下有/bin文件夹,
所以,在Makefile.configure中,Matlab的路径应该填写为
/opt/MATLAB/R2014b
然后运行
make matcaffe
以编译。
编译成功后如图:
再运行
make mattest
来检查编译是否成功
检查成功后如图:
如果找不到你自己的Matlab安装路径,可以使用:
find / -name matlab
然后就可以找到所有有Matlab名字的文件其所在位置
参考文献:
[1] http://blog.csdn.net/lkj345/article/details/51280369
[2] http://blog.csdn.net/solomon1558/article/details/52015754
[3] http://www.it610.com/article/4919314.htm
posted on 2017-08-02 15:03 Oliver-cs 阅读(1259) 评论(0) 编辑 收藏 举报