【POJ3613 Cow Relays】(广义矩阵乘法)

题目链接
先离散化,假设有\(P\)个点
定义矩阵\(A_{ij}\)表示\(i\)\(j\)只经过一条边的最短路,

\[{(A^{a+b})_{ij}=\min_{1\le k\le p} \{ (A^a)_{ik}+(A^b)_{kj} \}} \]

\(A^{a+b}_{ij}\)表示\(i\)\(j\)经过\((a+b)\)条边的最短路。
这不就是\(ddp\)里常用的广义矩阵乘法吗,直接上快速幂即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int b[1010], n, m, s, t, cnt, A, B, C;
struct Matrix{
	int a[220][220];
}M;
Matrix operator * (Matrix a, Matrix b){
	Matrix c;
	for(int i = 1; i <= cnt; ++i)
		for(int j = 1; j <= cnt; ++j){
			c.a[i][j] = 1 << 29;
			for(int k = 1; k <= cnt; ++k)
				c.a[i][j] = min(c.a[i][j], a.a[i][k] + b.a[k][j]);
		}
	return c;
}
int main(){
	scanf("%d%d%d%d", &n, &m, &s, &t);
	memset(M.a, 63, sizeof M.a);
	for(int i = 1; i <= m; ++i){
		scanf("%d%d%d", &C, &A, &B);
		if(!b[A]) b[A] = ++cnt;
		if(!b[B]) b[B] = ++cnt;
		M.a[b[A]][b[B]] = M.a[b[B]][b[A]] = C;
	}
	Matrix now = M; --n;
	while(n){
		if(n & 1) now = now * M;
		M = M * M; n >>= 1;
	}
	printf("%d\n", now.a[b[s]][b[t]]);
	return 0;
}
posted @ 2019-08-22 11:11  Qihoo360  阅读(382)  评论(0编辑  收藏  举报
You're powerful!