循环冗余校验 CRC的算法分析和程序实现
循环冗余校验 CRC的算法分析和程序实现
西南交通大学计算机与通信工程学院 刘东
摘要 通信的目的是要把信息及时可靠地传送给对方,因此要求一个通信系统传输消息必须可靠与快速,在数字通信系统中可靠与快速往往是一对矛盾。为了解决可靠性,通信系统都采用了差错控制。本文详细介绍了循环冗余校验CRC(Cyclic Redundancy Check)的差错控制原理及其算法实现。
关键字 通信 循环冗余校验 CRC-32 CRC-16 CRC-4
概述
在数字通信系统中可靠与快速往往是一对矛盾。若要求快速,则必然使得每个数据码元所占地时间缩短、波形变窄、能量减少,从而在受到干扰后产生错误地可能性增加,传送信息地可靠性下降。若是要求可靠,则使得传送消息地速率变慢。因此,如何合理地解决可靠性也速度这一对矛盾,是正确设计一个通信系统地关键问题之一。为保证传输过程的正确性,需要对通信过程进行差错控制。差错控制最常用的方法是自动请求重发方式(ARQ)、向前纠错方式(FEC)和混合纠错(HEC)。在传输过程误码率比较低时,用FEC方式比较理想。在传输过程误码率较高时,采用FEC容易出现“乱纠”现象。HEC方式则式ARQ和FEC的结合。在许多数字通信中,广泛采用ARQ方式,此时的差错控制只需要检错功能。实现检错功能的差错控制方法很多,传统的有:奇偶校验、校验和检测、重复码校验、恒比码校验、行列冗余码校验等,这些方法都是增加数据的冗余量,将校验码和数据一起发送到接受端。接受端对接受到的数据进行相同校验,再将得到的校验码和接受到的校验码比较,如果二者一致则认为传输正确。但这些方法都有各自的缺点,误判的概率比较高。
循环冗余校验CRC(Cyclic Redundancy Check)是由分组线性码的分支而来,其主要应用是二元码组。编码简单且误判概率很低,在通信系统中得到了广泛的应用。下面重点介绍了CRC校验的原理及其 算法实现。
一、循环冗余校验码(CRC)
CRC校验采用多项式编码方法。被处理的数据块可以看作是一个n阶的二进制多项式,由
采用CRC校验时,发送方和接收方用同一个生成多项式g(x),并且g(x)的首位和最后一位的系数必须为1。CRC的处理方法是:发送方以g(x)去除t(x),得到余数作为CRC校验码。校验时,以计算的校正结果是否为0为据,判断数据帧是否出错。
CRC校验可以100%地检测出所有奇数个随机错误和长度小于等于k(k为g(x)的阶数)的突发错误。所以CRC的生成多项式的阶数越高,那么误判的概率就越小。CCITT建议:2048 kbit/s的PCM基群设备采用CRC-4方案,使用的CRC校验码生成多项式g(x)=
二、CRC校验码的算法分析
CRC校验码的编码方法是用待发送的二进制数据t(x)除以生成多项式g(x),将最后的余数作为CRC校验码。其实现步骤如下:
(1) 设待发送的数据块是m位的二进制多项式t(x),生成多项式为r阶的g(x)。在数据块的末尾添加r个0,数据块的长度增加到m+r位,对应的二进制多项式为
(2) 用生成多项式g(x)去除
(3) 用
从CRC的编码规则可以看出,CRC编码实际上是将代发送的m位二进制多项式t(x)转换成了可以被g(x)除尽的m+r位二进制多项式
为了更清楚的了解CRC校验码的编码过程,下面用一个简单的例子来说明CRC校验码的编码过程。由于CRC-32、CRC-16、CCITT和CRC-4的编码过程基本一致,只有位数和生成多项式不一样。为了叙述简单,用一个CRC-4编码的例子来说明CRC的编码过程。
设待发送的数据t(x)为12位的二进制数据100100011100;CRC-4的生成多项式为g(x)=
除数次数 |
被除数/ g(x)/结果 |
余数 |
0 |
1 001000111000000 |
100111000000 |
1 0011 |
||
0 000100111000000 |
||
1 |
1 00111000000 |
1000000 |
1 0011 |
||
0 00001000000 |
||
2 |
1 000000 |
1100 |
1 0011 |
||
0 001100 |
从上面表中可以看出,CRC编码实际上是一个循环移位的模2运算。对CRC-4,我们假设有一个5 bits的寄存器,通过反复的移位和进行CRC的除法,那么最终该寄存器中的值去掉最高一位就是我们所要求的余数。所以可以将上述步骤用下面的流程描述:
//reg是一个5 bits的寄存器
把reg中的值置0.
把原始的数据后添加r个0.
While (数据未处理完)
Begin
If (reg首位是1)
reg = reg XOR 0011.
把reg中的值左移一位,读入一个新的数据并置于register的0 bit的位置。
End
reg的后四位就是我们所要求的余数。
这种算法简单,容易实现,对任意长度生成多项式的G(x)都适用。在发送的数据不长的情况下可以使用。但是如果发送的数据块很长的话,这种方法就不太适合了。它一次只能处理一位数据,效率太低。为了提高处理效率,可以一次处理4位、8位、16位、32位。由于处理器的结构基本上都支持8位数据的处理,所以一次处理8位比较合适。
为了对优化后的算法有一种直观的了解,先将上面的算法换个角度理解一下。在上面例子中,可以将编码过程看作如下过程:
由于最后只需要余数,所以我们只看后四位。构造一个四位的寄存器reg,初值为0,数据依次移入reg0(reg的0位),同时reg3的数据移出reg。有上面的算法可以知道,只有当移出的数据为1时,reg才和g(x)进行XOR运算;移出的数据为0时,reg不与g(x)进行XOR运算,相当与和0000进行XOR运算。就是说,reg和什么样的数据进行XOR移出的数据决定。由于只有一个bit,所以有
//reg是一个4 bits的寄存器
初始化t[]={0011,0000}
把reg中的值置0.
把原始的数据后添加r个0.
While (数据未处理完)
Begin
把reg中的值左移一位,读入一个新的数据并置于register的0 bit的位置。
reg = reg XOR t[移出的位]
End
上面算法是以bit为单位进行处理的,可以将上述算法扩展到8位,即以Byte为单位进行处理,即CRC-32。构造一个四个Byte的寄存器reg,初值为0x00000000,数据依次移入reg0(reg的0字节,以下类似),同时reg3的数据移出reg。用上面的算法类推可知,移出的数据字节决定reg和什么样的数据进行XOR。由于有8个bit,所以有
//reg是一个4 Byte的寄存器
初始化t[]={…}//共有
把reg中的值置0.
把原始的数据后添加r/8个0字节.
While (数据未处理完)
Begin
把reg中的值左移一个字节,读入一个新的字节并置于reg的第0个byte的位置。
reg = reg XOR t[移出的字节]
End
算法的依据和多项式除法性质有关。如果一个m位的多项式t(x)除以一个r阶的生成多项式g(x),
三、CRC-32的程序实现。
为了提高编码效率,在实际运用中大多采用查表法来完成CRC-32校验,下面是产生CRC-32校验吗的子程序。
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,0x0edb8832,…, 0x5a05df1b, 0x2d02ef8d
};//事先计算出的参数表,共有256项,未全部列出。
unsigned long GenerateCRC32(char xdata * DataBuf,unsigned long len)
{
unsigned long oldcrc32;
unsigned long crc32;
unsigned long oldcrc;
unsigned int charcnt;
char c,t;
oldcrc32 = 0x00000000; //初值为0
charcnt=0;
while (len--) {
t= (oldcrc32 >> 24) & 0xFF; //要移出的字节的值
oldcrc=crc_32_tab[t]; //根据移出的字节的值查表
c=DataBuf[charcnt]; //新移进来的字节值
oldcrc32= (oldcrc32 << 8) | c; //将新移进来的字节值添在寄存器末字节中
oldcrc32=oldcrc32^oldcrc; //将寄存器与查出的值进行xor运算
charcnt++;
}
crc32=oldcrc32;
return crc32;
}
参数表可以先在PC机上算出来,也可在程序初始化时完成。下面是用于计算参数表的c语言子程序,在Visual C++ 6.0下编译通过。
#include <stdio.h>
unsigned long int crc32_table[256];
unsigned long int ulPolynomial = 0x04c11db7;
unsigned long int Reflect(unsigned long int ref, char ch)
{ unsigned long int value(0);
// 交换bit0和bit7,bit1和bit6,类推
for(int i = 1; i < (ch + 1); i++)
{ if(ref & 1)
value |= 1 << (ch - i);
ref >>= 1; }
return value;
}
init_crc32_table()
{ unsigned long int crc,temp;
// 256个值
for(int i = 0; i <= 0xFF; i++)
{ temp=Reflect(i, 8);
crc32_table[i]= temp<< 24;
for (int j = 0; j < 8; j++){
unsigned long int t1,t2;
unsigned long int flag=crc32_table[i]&0x80000000;
t1=(crc32_table[i] << 1);
if(flag==0)
t2=0;
else
t2=ulPolynomial;
crc32_table[i] =t1^t2 ; }
crc=crc32_table[i];
crc32_table[i] = Reflect(crc32_table[i], 32);
}
}
结束语
CRC校验由于实现简单,检错能力强,被广泛使用在各种数据校验应用中。占用系统资源少,用软硬件均能实现,是进行数据传输差错检测地一种很好的手段。
参考文献
[1] 王新梅 肖国镇. 纠错码-原理与方法.西安:西安电子科技大学出版社,2001
[2] 罗伟雄 韩力 原东昌 丁志杰 通信原理与电路. 北京:北京理工大学出版社,1999
[3] 王仲文 ARQ编码通信.北京:机械工业出版社,1991
[4] Ross Williams, A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS. Document url: http://www.repairfaq.org/filipg/ ,1993
posted on 2005-03-07 16:35 LabVIEW开发者 阅读(10188) 评论(0) 编辑 收藏 举报