充满思维含量的DP 选美

   

问题 B: 选美

时间限制: 1 Sec  内存限制: 256 MB

【题目描述】

一年一度的星哥选美又拉开了帷幕

N个人报名参加选拔,每个人都有着各自的相貌参数和身材参数(不大于 10000 的正整数)。你的任务是尽可能让更多人被星哥选中,而唯一要求就是,在这只队伍里面的每个人,都需满足以下不等式:

A (H− h) +B(W− w) ≤ C

其中H和W为这个人的相貌和身材, h和w为选中者中的最小相貌参数和最小身材参数,而A、 B、 C为三个不大于10000 的正的整型常数。

现在请计算星哥最多可以选中多少人。

【输入格式】

第一行:一个整数: N(0<N<=2000)

第二行:三个分开的整数: A,B和C

第三行到第N+ 2行:每行有两个用空格分开的整数,分别表示一个人的相貌参数和身材参数

【输出格式】

第一行:最多被选的人数

【输入样例】

8

1 2 4

5 1

3 2

2 3

2 1

7 2

6 4

5 1

4 3

【输出样例】

5

  其实也不全是DP,这里用到了一个数学的推导,实际就是个zz的不等式,

  首先,固定一个h,而式子中A*(H-h)+B*(W-w)<=C ----->  B*w>=A*H+B*W-C-A*h

  明显w对于一个固定的人,有唯一的范围   (A*H+B*W-C-A*h)/B~w,每个人对应选这个h有一段w的范围,

  因此对每个h就有选任一个w时能满足多少人,这样就是一个N^2加一点常数的效率,成功改良了N^3的暴力。。。

   最终,对每个h,w选最大就行了。细节:H比h小的continue,可以考虑离散一下。

 

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<ctime>
#include<algorithm>
using namespace std;
int read()
{
	int sum=0,f=1;char x=getchar();
	while(x<'0'||x>'9'){if(x=='-')f=-1;x=getchar();}
	while(x>='0'&&x<='9'){sum=sum*10+x-'0';x=getchar();}
	return sum*f;
}
struct peo
{
	int a,b,id;
} a[2005];
int n,ans=0,A,B,C,ha[2005],hb[2005],sza,szb,v[2005];
void init()
{
	sort(ha+1,ha+n+1);sza=unique(ha+1,ha+n+1)-ha-1;
	sort(hb+1,hb+n+1);szb=unique(hb+1,hb+n+1)-hb-1;
	//sort(a+1,a+n+1,cmp);
}
int main()
{
   //  freopen("beauty.in","r",stdin);
  //   freopen("beauty.out","w",stdout);
	n=read();A=read();B=read();C=read();
	for(int i=1;i<=n;i++)
	{
		ha[i]=a[i].a=read();
		hb[i]=a[i].b=read();
		a[i].id=a[i].a*A+a[i].b*B-C;
	}
	init();
	for(int i=1;i<=sza;i++)
	{
	   int sum=0,t=ha[i]*A;	
	   memset(v,0,sizeof(v));
	   for(int j=1;j<=n;j++)
	   {
	   	    if(a[j].a<ha[i])continue;
		    int g=(a[j].id-t)/B,l=upper_bound(hb+1,hb+szb+1,a[j].b)-hb;
			int k=lower_bound(hb+1,hb+szb+1,g)-hb; 
			for(int h=k;h<=szb;h++)
			   if(hb[h]<=a[j].b)
			    v[h]++;
			   else break;
	   }
	   for(int j=1;j<=szb;j++)
	      sum=max(sum,v[j]);
       ans=max(ans,sum); 
    }
	cout<<ans;
}

posted @ 2017-10-06 20:19  Hzoi_QTY  阅读(151)  评论(0编辑  收藏  举报