主成分分析法
主成分分析法
该方法可以用来数据降维,把很多的评价指标减少为几个主要的评价指标,即主成分,同样这个方法也可以用来求权重
主要步骤
设有m个评价对象和n个评价指标
- 对原始数据进行标准化处理
式中:μ是样本均值,s是样本标准差
- 计算相关系数矩阵R
k i是第k个评价对象的第i个指标,k j是第k个评价对象的第j个指标,求和是为了计算所有k个评价对象的第i个指标,第j个指标的关系
r为第i个指标和第j个指标的总相关系数,与评价对象无关,只是评价指标间的相互关系,最后得到R为一个n*n的矩阵
- 计算特征值和特征向量
计算出R的特征值λ1>λ2>λ3>...λn>0,和对应的特征向量u1,u2,...,un,那么构成n个新的指标向量
其中
- 对p(p<=n)个主成分,计算综合评价值
a. 计算特征值λ的信息贡献率和累积贡献率
实际上就是对特征值λ的归一化过程,将其都约束在0,1范围内
当累积贡献率接近1(达到0.85以上),就可以选择这前p个主成分来代替原来的n个指标变量,从而可以对这p个主成分进行总和分析
b. 计算综合得分:
b为第j个主成分的信息贡献率,y为第j个主成分
就是以各个主成分的贡献率b为权重对各个主成分进行加权求和
而各个主成分其实就是以特征值λ为权重对各个标准化指标向量求和
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」