用OpenCv来做人脸识别
参考这篇文章: http://tech.idv2.com/2012/01/20/face-detection-with-python-opencv/
python比较简单,只需安装 python-opencv 就行:
$ sudo apt-get install python-opencv
python的实现也很简单,参考:http://opencv.willowgarage.com/documentation/python/objdetect_cascade_classification.html
代码:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
# face_detect.py
# Face Detection using OpenCV. Based on sample code from:
# http://python.pastebin.com/m76db1d6b
# Usage: python face_detect.py <image_file>
import sys, os
import cv
from PIL import Image, ImageDraw
def detectObjects(image):
"""Converts an image to grayscale and prints the locations of any faces found"""
storage = cv.CreateMemStorage()
cascade = cv.Load('haarcascade_frontalface_alt.xml')
faces = cv.HaarDetectObjects(image, cascade, storage)
result = []
for (x,y,w,h),n in faces:
result.append((x, y, x+w, y+h))
return result
def process(infile, outfile):
image = cv.LoadImage(infile);
if image:
faces = detectObjects(image)
im = Image.open(infile)
if faces:
draw = ImageDraw.Draw(im)
for f in faces:
draw.rectangle(f, outline=(255, 0, 255))
im.save(outfile, "JPEG", quality=100)
else:
print "Error: cannot detect faces on %s" % infile
if __name__ == "__main__":
process('input.jpg', 'output.jpg')
注:haarcascade_frontalface_alt.xml 可以在 https://github.com/talvarez/Face.js/tree/master/cascades 找到
Node.js的话,有一个叫Face.js的项目,对OpenCv做了简单封装,地址是: https://github.com/talvarez/Face.js
这个需要先安装OpenCv库,目前版本是2.3.1,按照可以参考: UBUNTU 下编译安装opencv 2.3.1
Face.js的具体的示例代码可以在Face.js里面的example里面找到,这里贴个简单的:
var Face = require('../build/default/face.node'),
detector = new Face.init();
detector.img = './samples/frame1.png';
detector.maxsize = 20;
detector.pathto = '../cascades/'
detector.oncomplete = function(faces){
console.log("I found " + faces.length + " faces");
for(var i = 0; i < faces.length; i++) {
console.log(faces[i].x, faces[i].y, faces[i].width, faces[i].height);
}
};
detector.run();
最后贴张识别后的图:
作者:QLeelulu
出处:http://QLeelulu.cnblogs.com/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利
出处:http://QLeelulu.cnblogs.com/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利