深入V8引擎-默认Platform之mac篇(2)

  先说结论,V8引擎在默认Platform中初始化的这个线程是用于处理类似于setTimeout的延时任务。

  另外附一些图,包括继承树、关键属性归属、纯逻辑工作流程,对代码木得兴趣的看完图可以X掉了。

  上一篇讲了V8初始化默认Platform对象时会做三件事,其中生成空白DefaultPlatform、获取线程池大小已经讲过了,剩下线程启动相关的内容。

  写之前花了10几分钟学了下mac下C++的线程,对API有一个初步了解,给一个简单的例子,大概流程如下。

// V8源码中设置的stack_size 在测试demo中不好使
const int stack_size = 1 * 1024 * 512;
int tmp = 0;

// 线程的任务 参数来源于创建时的第四个参数
void* add(void* number){
  tmp = tmp + *(int*)number;
  printf("tmp: %i\n", tmp);
  return nullptr;
};

int main(int argc, const char * argv[]) {
  // 创建线程对象
  pthread_t pt;
  // 创建线程属性
  pthread_attr_t attr;
  memset(&attr, 0, sizeof(attr));
  pthread_attr_init(&attr);
  // 设置属性的size
  pthread_attr_setstacksize(&attr, stack_size);
  // 函数参数
  int num = 5;
  int* ptr = #
  // 生成一个线程
  // 参数列表参照各个变量
  int ret = pthread_create(&pt, &attr, add, ptr);
  if(ret != 0) printf("cannot create thread");
  return 0;
}

  通过几个步骤,就可以创建一条线程来处理任务,启动后的输出就懒得截图了,反正就是打印一个5。

  有了上面的例子,可以慢慢来看V8初始化时多线程的启动过程,首先是入门方法。

// 3
void DefaultPlatform::EnsureBackgroundTaskRunnerInitialized() {
  // 这里初始化DefaultPlatform的属性 需要加锁
  base::MutexGuard guard(&lock_);
  if (!worker_threads_task_runner_) {
    worker_threads_task_runner_ =
        // 3-2
        std::make_shared<DefaultWorkerThreadsTaskRunner>(
            thread_pool_size_, time_function_for_testing_
                                   ? time_function_for_testing_
                                  // 3-1
                                   : DefaultTimeFunction);
  }
}

// 3-1
double DefaultTimeFunction() {
  return base::TimeTicks::HighResolutionNow().ToInternalValue() /
         static_cast<double>(base::Time::kMicrosecondsPerSecond);
}

  if中的worker_threads_task_runner是DefaultPlatform的私有属性,由于初始化时默认值为NULL,这里做一个定义赋值。第一个参数是在第二步获取的线程池大小,第二个参数是一个计数方法,默认引用之前Time模块里的东西,返回硬件时间戳,具体实现可以看我之前写的。

  接下来看DefaultWorkerThreadsTaskRunner类的构造函数,接受2个参数。

// 3-2
// queue_ => DelayedTaskQueue::DelayedTaskQueue(TimeFunction time_function) : time_function_(time_function) {}
DefaultWorkerThreadsTaskRunner::DefaultWorkerThreadsTaskRunner(
    uint32_t thread_pool_size, TimeFunction time_function)
    : queue_(time_function),
      time_function_(time_function),
      thread_pool_size_(thread_pool_size) {
  for (uint32_t i = 0; i < thread_pool_size; ++i) {
    // 3-3
    thread_pool_.push_back(base::make_unique<WorkerThread>(this));
  }
}

  用2个参数初始化了3个属性,并且根据size往线程池中添加线程,thread_pool_这个属性用vector在管理,push_back相当于JS的push,当成数组来理解就行了。

  添加的WorkerThread类是在DefaultWorkerThreadsTaskRunner里面的一个私有内部类,继承于Thread,单纯的用来管理线程。C++的this比较简单,没有JS那么多概念,就是一个指向当前对象的指针,来看一下线程类的构造函数。

// 3-3
DefaultWorkerThreadsTaskRunner::WorkerThread::WorkerThread(DefaultWorkerThreadsTaskRunner* runner)
    // 这里调用父类构造函数
    : Thread(Options("V8 DefaultWorkerThreadsTaskRunner WorkerThread")),
    // 这里初始化当前类属性
      runner_(runner) {
  // 3-4
  Start();
}

  这里同时调用了父类构造函数并初始化本身的属性,runner就是上面那个对象本身。这个构造函数长得比较奇怪,其中Options类是Thread的内部类,有一个接受一个类型为字符串的构造函数,而Thread的构造函数只接受Options类型,所以会这样,代码如下。

class Thread {
 public:
  // Opaque data type for thread-local storage keys.
  using LocalStorageKey = int32_t;

  class Options {
   public:
    Options() : name_("v8:<unknown>"), stack_size_(0) {}
    explicit Options(const char* name, int stack_size = 0)
        : name_(name), stack_size_(stack_size) {}
    // ...
  };

  // Create new thread.
  explicit Thread(const Options& options);
  // ...
}

  可以简单理解这里给线程取了一个名字,在给Options命名的同时,其实也给Thread命名了,如下。

Thread::Thread(const Options& options)
    : data_(new PlatformData),
      stack_size_(options.stack_size()),
      start_semaphore_(nullptr) {
  if (stack_size_ > 0 && static_cast<size_t>(stack_size_) < PTHREAD_STACK_MIN) {
    stack_size_ = PTHREAD_STACK_MIN;
  }
  set_name(options.name());
}

class Thread {
  // The thread name length is limited to 16 based on Linux's implementation of
  // prctl().
  static const int kMaxThreadNameLength = 16;
  char name_[kMaxThreadNameLength];
}

void Thread::set_name(const char* name) {
  // 这里的长度被限制在16以内
  strncpy(name_, name, sizeof(name_));
  name_[sizeof(name_) - 1] = '\0';
}

  看注释说,由于Linux的prctl方法限制了长度,所以这里的name也最多只能保存16位,而且C++的字符串的最后一位还要留给结束符,所以理论上传入Options的超长字符串"V8 DefaultWorkerThreadsTaskRunner WorkerThread"只有前15位作为Thread的name保存下来了,也就是"V8 Defaultworke",非常戏剧性的把r给砍掉了。。。

  初始化完成后,会调用Start方法启动线程,这个方法并不需要子类实现,而是基类已经定义好了,保留关键代码如下。

// 3-4
void Thread::Start() {
  int result;
  // 线程对象
  pthread_attr_t attr;
  memset(&attr, 0, sizeof(attr));
  // 初始化线程对象
  result = pthread_attr_init(&attr);
  size_t stack_size = stack_size_;
  if (stack_size == 0) {
    stack_size = 1 * 1024 * 1024;
  }
  if (stack_size > 0) {
    // 设置线程对象属性
    result = pthread_attr_setstacksize(&attr, stack_size);
  }
  {
    // 创建一个新线程
    // 3-5
    result = pthread_create(&data_->thread_, &attr, ThreadEntry, this);
  }
  // 摧毁线程对象
  result = pthread_attr_destroy(&attr);
}

  参照一下文章开始的demo,可以看出去掉了合法性检测和宏之后,在初始化和启动线程基本上V8的形式是一样的。

  简单总结一下,V8初始化了一个DefaultPlatform类,计算了一下可用线程池大小,生成了几条线程弄进线程池,而每条线程的任务就是那个ThreadEntry,这篇全部写完算了。

 

  这个方法贼麻烦。

// 3-5
static void* ThreadEntry(void* arg) {
  Thread* thread = reinterpret_cast<Thread*>(arg);
  // We take the lock here to make sure that pthread_create finished first since
  // we don't know which thread will run first (the original thread or the new
  // one).
  { MutexGuard lock_guard(&thread->data()->thread_creation_mutex_); }
  // 3-6
  SetThreadName(thread->name());
  // 3-7
  thread->NotifyStartedAndRun();
  return nullptr;
}

  由于线程任务的参数定义与返回值都是void*,这里直接做一个强转。随后会加一个线程锁,因为这几个线程在初始化的时候并不需要同时执行这个任务。执行的第一个方法虽然从名字来看只是简单的给线程设置名字,但是内容却不简单。  

  传入SetThreadName方法的参数是之前那个被截断的字符串,看一下这个方法。

// 3-6
static void SetThreadName(const char* name) {
  // pthread_setname_np is only available in 10.6 or later, so test
  // for it at runtime.
  int (*dynamic_pthread_setname_np)(const char*);
  // 读取动态链接库
  *reinterpret_cast<void**>(&dynamic_pthread_setname_np) =
    dlsym(RTLD_DEFAULT, "pthread_setname_np");
  if (dynamic_pthread_setname_np == nullptr) return;

  // Mac OS X does not expose the length limit of the name, so hardcode it.
  static const int kMaxNameLength = 63;
  // 从读取到的方法处理name
  dynamic_pthread_setname_np(name);
}

  里面用了一个很玄的api的叫dlsym,官方解释如下。

The function dlsym() takes a "handle" of a dynamic library returned by dlopen() and the null-terminated symbol name, returning the address where that symbol is loaded into memory.

  大概就是根据句柄读取一个动态链接库,名字就是那个字符串,返回其在内存中的地址,所以这块的调试全是机器码,根本看不懂,最后返回的一个函数。

  知道这是个函数就行了,至于怎么设置线程名字我也不太想知道。

  第二步的方法名就是运行线程的任务,调用链比较长,会来回在几个类之间穿梭,调用各自属性的方法。

// 3-7
void NotifyStartedAndRun() {
  if (start_semaphore_) start_semaphore_->Signal();
  // 3-8
  Run();
}

// 3-8
void DefaultWorkerThreadsTaskRunner::WorkerThread::Run() {
  runner_->single_worker_thread_id_.store(base::OS::GetCurrentThreadId(), std::memory_order_relaxed);
  // 3-9
  while (std::unique_ptr<Task> task = runner_->GetNext()) {
    // 每一个task会实现自己的run函数
    task->Run();
  }
}

// 3-9
std::unique_ptr<Task> DefaultWorkerThreadsTaskRunner::GetNext() {
  // 3-10
  return queue_.GetNext();
}

  不理清楚,这个地方真的很麻烦,绕得很,可以看顶部的继承图。总之,最后调用的是DefaultWorkerThreadsTaskRunner类上一个类型为DelayedTaskQueue类的GetNext方法,返回类型是Task类,V8只是简单定义了一个基类,实际运行时的task都需要继承这个类并实现其Run方法以便线程执行。

  最后的最后,GetNext的逻辑其实可以参考libuv的逻辑,机制都大同小异,方法的源码如下。

// 3-10
std::unique_ptr<Task> DelayedTaskQueue::GetNext() {
  base::MutexGuard guard(&lock_);
  for (;;) {
    /**
     * 这一片内容完全可以参考libuv事件轮询的前两步
     * 1、从DelayQueue队列中依次取出超过指定时间的task
     * 2、将所有超时的task放到task_queue_队列中
     * 3、从task_queue_中将task依次取出并返回
     * 4、外部会调用task的Run方法并重复调用该函数
    */
    double now = MonotonicallyIncreasingTime();
    std::unique_ptr<Task> task = PopTaskFromDelayedQueue(now);
    while (task) {
      task_queue_.push(std::move(task));
      task = PopTaskFromDelayedQueue(now);
    }
    if (!task_queue_.empty()) {
      std::unique_ptr<Task> result = std::move(task_queue_.front());
      task_queue_.pop();
      return result;
    }

    if (terminated_) {
      queues_condition_var_.NotifyAll();
      return nullptr;
    }
    /**
     * 1、当task_queue_队列没有task需要处理 但是delay_task_queue_有待处理task
     * 这里会计算当前队列中延迟task中最近的触发时间 等待对应的时间再次触发
     * 2、当两个队列都没有需要的事件
     * 线程会直接休眠等待唤醒
    */
    if (task_queue_.empty() && !delayed_task_queue_.empty()) {
      double wait_in_seconds = delayed_task_queue_.begin()->first - now;
      base::TimeDelta wait_delta = base::TimeDelta::FromMicroseconds(base::TimeConstants::kMicrosecondsPerSecond * wait_in_seconds);

      bool notified = queues_condition_var_.WaitFor(&lock_, wait_delta);
      USE(notified);
    } else {
      queues_condition_var_.Wait(&lock_);
    }
  }
}

  哎……V8引擎不过如此。

posted @ 2019-06-04 20:16  书生小龙  阅读(778)  评论(0编辑  收藏  举报