【挖坑】某场组队训练找到的想要挖一挖的东西

随手去新生的组队训练发现一个东西,显然是打表题但是突然兴致一上来想证一证,毕竟训练也打表未免太无聊了

背景:递推式

f(l,r)= sum(l,r)+ f(l+1,r) + f(l,r-1)

f(i,i)= a[i]

一些粗糙的推论

考虑贡献函数g(n,m)表示长度为f(1,n)中第m位的数的贡献次数

易得g(n,1)= n,g(n,n-i+1)= g(n,i)

这个性质很眼熟,继续观察可以发现还有:往下推一层贡献是左右各少一格的区间贡献,再多一次

g(n,m)= g(n-1,m-1)+ g(n-1,m)+1

过分了,这就是组合数递推公式后面再+1啊。。。

所以这整个贡献就跟组合数有关

(其实,感觉很多贡献题都跟组合数有关,但是打表AC完就不知其所以然了,感觉很可惜,不去弄明白的话还是会折在出题人手里半小时-1小时左右的样子,没有掌握那种推导的方法)

然而。。然而。。我不知道组合数递推公式是怎么证出来的。。。

但是发现g(n,m)= C(n,m)+ C(n,m-1)- 1

这道题就已经可以粗糙的AC了。。。

但是还是不知道这题的正解是跟什么有关。。。

等空下来去学习一下组合数的证明过程吧。。。

挖坑防忘。。

 

posted @ 2019-08-07 17:01  QAQorz  阅读(152)  评论(0编辑  收藏  举报