第K短路径 POJ 2449
第K短路径 POJ 2449
一个朴实的算法是搜索出所有的路径,去第k短。
然后我们尝试能否让第一次到底的最短路径,第二次到达的第二短。其实是给A*。
我们维护已经走了多远和距离终点还有多远的距离和小的优先走,就能达到上述要求。
距离终点还有多远反向建图,求一次最短路即可。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
const int MAXN = 1050;
const int MAXM = 1e5 + 10;
int n, m, first[MAXN], sign;
int dist[MAXN], S, T, K;
struct Edge {
int to, w, next;
} edge[MAXM * 4];
void init() {
memset(first, -1, sizeof(first));
sign = 0;
}
void add_edge(int u, int v, int w) {
edge[sign].to = v;
edge[sign].w = w;
edge[sign].next = first[u];
first[u] = sign++;
}
struct Input {
int u, v, w;
} in[MAXM];
struct PriNode {
int to, cost;
PriNode(int tt = 0, int cc = 0):to(tt), cost(cc) {}
friend bool operator < (const PriNode &a, const PriNode &b) {
return a.cost > b.cost;
}
};
void dijkstra(int s) {
priority_queue<PriNode>que;
que.push(PriNode(s, 0));
memset(dist, -1, sizeof(dist));
while(!que.empty()) {
PriNode now = que.top();
que.pop();
if(dist[now.to] == -1) {
dist[now.to] = now.cost;
for(int i = first[now.to]; ~i; i = edge[i].next) {
int to = edge[i].to, w = edge[i].w;
if(dist[to] == -1) {
que.push(PriNode(to, now.cost + w));
}
}
}
}
}
struct Node {
int to, val;
Node(int tt = 0, int vv = 0):to(tt), val(vv) {}
friend bool operator < (const Node &a, const Node &b) {
return a.val + dist[a.to] > b.val + dist[b.to];
}
};
int a_start(int S, int T, int K) {
priority_queue<Node>que;
que.push(Node(S, 0));
while(!que.empty()) {
Node now = que.top();
que.pop();
if(now.to == T) {
if(K > 1) {
K--;
} else {
return now.val;
}
}
for(int i = first[now.to]; ~i; i = edge[i].next) {
int to = edge[i].to, w = edge[i].w;
que.push(Node(edge[i].to, now.val + w));
}
}
return -1;
}
int main() {
init();
scanf("%d %d", &n, &m);
for(int i = 1; i <= m; i++ ) {
scanf("%d %d %d", &in[i].u, &in[i].v, &in[i].w);
add_edge(in[i].v, in[i].u, in[i].w);
}
scanf("%d %d %d", &S, &T, &K);
dijkstra(T);
if(dist[S] == -1) {
puts("-1");
return 0;
}
if(S == T) {
K++;
}
init();
for(int i = 1; i <= m; i++ ) {
add_edge(in[i].u, in[i].v, in[i].w);
}
printf("%d\n", a_start(S, T, K));
return 0;
}