Processing math: 100%

图像质量评估论文 | Deep-IQA | IEEETIP2018

文章来自:同作者微信公众号【机器学习炼丹术】~

0 综述

这一篇文章和上一篇的rank-IQA感觉都是不错的处理NR-IQA任务的框架,让我们好好学一学这一篇文章中的精髓。

这一篇文章的related work列举了很多之前的NR-IQA的模型:

  • 【18】
    • DIIVINE:先识别图像失真的类型,然后选择对应类型的回归模型得到具体质量分数;
  • 【20】
    • BRISQUE:利用非对称广义高斯分布在空间域对图像进行建模,模型特征是空间邻域的差值;
  • 【21】
    • NIQE:利用多元高斯模型提取特征,然后利用无监督的方法把他们和质量分布结合起来;
  • 【22】
    • FRIQUEE:把人工提取的特征图输入到4层的深度置信网络中,输出特征向量,利用SVM分类;
  • 【24】
    • CORNIA:最先使用纯数据驱动解决NR-IQA问题的模型之一,使用k-mean聚类处理亮度和对比度被标准化的图片patch,然后从数据中抽取软编码距离来预测质量分数;
  • 【28】
    • BIECOM:第一步用标准话的图片patch经过CNN估计出一个本地质量分数(这个模型是使用现有的FR数据集预训练),然后在把分数的均值和方差作为特征回顾分数;

不说了,看了半天很多都是很老的人工特征的方法,不太行不太行。

1 细节

1.1 FR-IQA

论文中也是使用了和上一篇文章rank-IQA一样的模型,孪生网络saimese net,论文中先提出了FR-IQA的模型框架:

在这个框架中,图片是被patch称32x32的大小,然后feature extractor使用的是VGG19,包含5个maxpool层,也就是说,经过features extractor后,特征会变成(512,1,1)这样的shape。

对于FR-IQA问题,reference patch和distorted patch经过feature extractor得到两个512的向量,然后在fusion阶段使用concat拼接在一起,除了这两个,还把两个特征向量的差值也一同拼接进来,显式的把两个特征的区别也作为特征了,总之是这个样子的:concat(fr,fd,frfd)

在fusion features vector后面有两个部分,一个是回归,一个是weights;关于如何从很多的patches中得到整个图片的质量分数,作者给出了两个方法: 这个patch是从图像中无重叠的采样

  1. 简单的平均。

对于这种平均的方法,所有patch对于整个图片的影响是相同的,所以损失函数也定位MAE:

  1. 加权平均。
    如上图的结构,对特征进行融合之后,进行回归,输出一个patch的质量分数之后,还要在另外一个分支输出这个patch在整个图片中的权重分数。权重参数保证是大于0的。

1.2 NR-IQA


就是单纯的把reference去掉,然后不做特征融合。

2 总结

这是一种利用CNN来处理质量评估的一个基本框架和思路。作为入门学习是比较好的一个框架。

posted @   忽逢桃林  阅读(601)  评论(0编辑  收藏  举报
编辑推荐:
· 对象命名为何需要避免'-er'和'-or'后缀
· SQL Server如何跟踪自动统计信息更新?
· AI与.NET技术实操系列:使用Catalyst进行自然语言处理
· 分享一个我遇到过的“量子力学”级别的BUG。
· Linux系列:如何调试 malloc 的底层源码
阅读排行:
· C# 中比较实用的关键字,基础高频面试题!
· .NET 10 Preview 2 增强了 Blazor 和.NET MAUI
· Ollama系列05:Ollama API 使用指南
· 为什么AI教师难以实现
· 如何让低于1B参数的小型语言模型实现 100% 的准确率
点击右上角即可分享
微信分享提示