poj 1741 树的点分治(入门)
Tree
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 18205 | Accepted: 5951 |
Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.
The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
5 4 1 2 3 1 3 1 1 4 2 3 5 1 0 0
Sample Output
8
/* poj 1741 树的点分治(入门) problem: 给一棵边带权树,问两点之间的距离小于等于K的点对有多少个 solve:
随便找的博客学习下 大致思路,对当前树先求其重心为根节点,然后找出所有点到根节点的距离. 然后就能计算出有多少的的和 <= k. 但是这两个点有可能来自同一个子树,所以在后面计算中减去,就能计算出过当前根节点的所有对. 以同样的方法计算子树的情况,递推下去就行. 重心是为了让最大子树的节点数最小,从而增加效率. (个人理解) hhh-2016-08-22 20:00:18 */ #pragma comment(linker,"/STACK:124000000,124000000") #include <algorithm> #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <vector> #include <math.h> #include <map> #define lson i<<1 #define rson i<<1|1 #define ll long long #define clr(a,b) memset(a,b,sizeof(a)) #define key_val ch[ch[root][1]][0] #define inf 0x3FFFFFFFFFFFFFFFLL using namespace std; const int maxn = 100010; struct node { int to,w; node() {}; node(int v,int _w):to(v),w(_w) {}; }; vector<node> q[maxn]; int n,k,s[maxn],f[maxn],root,d[maxn],ans,limit; int Size; bool vis[maxn]; vector<int> ta; void get_root(int now,int fa) { int v; s[now] = 1,f[now] = 0; for(int i = 0;i < q[now].size();i++) { if( (v=q[now][i].to) == fa || vis[v]) continue; get_root(v,now); s[now] += s[v]; f[now] = max(f[now],s[v]); } f[now] = max(f[now],Size - s[now]); if(f[now] < f[root]) root = now; } void dfs(int now,int fa) { int v; ta.push_back(d[now]); s[now] = 1; for(int i = 0;i < q[now].size();i++) { if( (v=q[now][i].to) == fa || vis[v]) continue; d[v] = d[now] + q[now][i].w; dfs(v,now); s[now] += s[v]; } } int cal(int now,int begi) { ta.clear(),d[now] = begi; dfs(now,0); sort(ta.begin(),ta.end()); int cnt = 0; for(int l = 0,r=ta.size()-1;l<r;) { if(ta[l] + ta[r] <= limit) cnt += (r-l++); else r --; } return cnt; } void work(int now) { int v; ans += cal(now,0); vis[now] = 1; for(int i = 0;i < q[now].size(); i++) { if(!vis[v = q[now][i].to]) { ans -= cal(v,q[now][i].w); f[0] = Size = s[v]; get_root(v,root = 0); work(root); } } } int main() { while(scanf("%d%d",&n,&limit) == 2) { if(!n && !limit) break; for(int i = 0;i <= n;i++) q[i].clear(); memset(vis,0,sizeof(vis)); int a,b,c; for(int i = 1;i < n;i++) { scanf("%d%d%d",&a,&b,&c); q[a].push_back(node(b,c)); q[b].push_back(node(a,c)); } f[0] = Size = n; get_root(1,root = 0); ans = 0; work(root); printf("%d\n",ans); } return 0; }