poj 1269 线段与线段相交
Intersecting Lines
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 13605 | Accepted: 6049 |
Description
We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Input
The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).
Output
There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".
Sample Input
5 0 0 4 4 0 4 4 0 5 0 7 6 1 0 2 3 5 0 7 6 3 -6 4 -3 2 0 2 27 1 5 18 5 0 3 4 0 1 2 2 5
Sample Output
INTERSECTING LINES OUTPUT POINT 2.00 2.00 NONE LINE POINT 2.00 5.00 POINT 1.07 2.20 END OF OUTPUT
/* poj 1269 线段与线段相交 可以通过叉积进行判断,然后计算出交点即可. hhh-2016-05-04 20:48:26 */ #include <iostream> #include <vector> #include <cstring> #include <string> #include <cstdio> #include <queue> #include <cmath> #include <algorithm> #include <functional> #include <map> using namespace std; #define lson (i<<1) #define rson ((i<<1)|1) typedef long long ll; const int maxn = 40010; double eps = 1e-8; int tot; int n,m; double x1,x2,y1,y2,x3,x4,y3,y4; int sgn(double x) { if(fabs(x) < eps) return 0; if(x < 0) return -1; else return 1; } struct Point { double x,y; Point() {} Point(int _x,int _y) { x = _x,y = _y; } Point operator -(const Point &b)const { return Point(x-b.x,y-b.y); } double operator ^(const Point &b)const { return x*b.y-y*b.x; } }; struct Line { Point s,t; Line() {} Line(Point _s,Point _t) { s = _s; t = _t; } pair<int,Point> operator &(const Line&b)const { Point res = s; if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断 { if( sgn((s-b.t) ^ (b.s-b.t)) == 0) return make_pair(0,res); else return make_pair(1,res); } double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t)); res.x += (t.x-s.x)*ta; res.y += (t.y-s.y)*ta; return make_pair(2,res); } }; int tans[maxn]; Line line[maxn]; Point po[maxn]; Point p; struct pair<int,Point> t; int main() { int T; int flag= 1; scanf("%d",&T); while(T--) { if(flag) printf("INTERSECTING LINES OUTPUT\n"); flag = 0; scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3,&x4,&y4); Line l1 = Line(Point(x1,y1),Point(x2,y2)); Line l2 = Line(Point(x3,y3),Point(x4,y4)); t = (l1&l2); if(t.first == 0) printf("LINE\n"); else if(t.first == 1) printf("NONE\n"); else { printf("POINT "); Point tp = t.second; printf("%.2f %.2f\n",tp.x,tp.y); } if(T==0) printf("END OF OUTPUT\n"); } return 0; }