SPOJ DQUERY树状数组离线or主席树
Time Limit: 227MS | Memory Limit: 1572864KB | 64bit IO Format: %lld & %llu |
Description
English | Vietnamese |
Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair (i, j) (1 ≤ i ≤ j ≤ n). For each d-query (i, j), you have to return the number of distinct elements in the subsequence ai, ai+1, ..., aj.
Input
- Line 1: n (1 ≤ n ≤ 30000).
- Line 2: n numbers a1, a2, ..., an (1 ≤ ai ≤ 106).
- Line 3: q (1 ≤ q ≤ 200000), the number of d-queries.
- In the next q lines, each line contains 2 numbers i, j representing a d-query (1 ≤ i ≤ j ≤ n).
Output
- For each d-query (i, j), print the number of distinct elements in the subsequence ai, ai+1, ..., aj in a single line.
Example
Input 5 1 1 2 1 3 3 1 5 2 4 3 5 Output 3 2 3
树状数组的方法:
/* SPOJ DQUERY(hdu3333)线段树or树状数组离线 查询区间内不同数的个数 本来是学习主席树的,发现这方法不会也就写了下,感觉很机智 先将所有查询按区间右端从小到大排序,如果一个数已经出现过就先把以前位置上的删 掉然后在新的位置上插入,像这样在[l,r]中重复的就只计算了一次 hhh-2016-02-18 14:47:11 */ #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> #include <map> #include <queue> #include <vector> using namespace std; typedef long long ll; typedef long double ld; int tot; map<int , int >mp; const int maxn = 100010; int n; int a[maxn],ans[maxn*2]; int s[maxn]; struct node { int l,r,id; } qu[maxn*2]; bool cmp(node a,node b) { return a.r < b.r; } int lowbit(int x) { return x&(-x); } void add(int x,int val) { for(int i = x ; i <= n; i+=lowbit(i)) s[i] += val; } int query(int x) { int sum = 0; for(int i = x; i > 0; i -= lowbit(i)) sum += s[i]; return sum; } int main() { while(scanf("%d",&n) != EOF) { mp.clear(); memset(s,0,sizeof(s)); for(int i =1 ; i <= n; i++) scanf("%d",&a[i]); int q; scanf("%d",&q); for(int i = 1; i <= q; i++) { scanf("%d%d",&qu[i].l,&qu[i].r); qu[i].id = i; } sort(qu+1,qu+q+1,cmp); int t = 1; for(int i= 1;i <= q;i++) { for(;t <= qu[i].r;t++) { if(mp[a[t]] != 0) add(mp[a[t]],-1); mp[a[t]] = t; add(t,1); } ans[qu[i].id] = query(qu[i].r) - query(qu[i].l-1); } for(int i = 1;i <= q;i++) { printf("%d\n",ans[i]); } } return 0; } 主席树: //参考:关于主席树的读书笔记 将1-i用线段树处理,每个表示前i个数的情况。如果每棵线段都建完整的话肯定会mle,我们发现对于前缀[1,i]和前缀[1,i+1]的线段树,如果b[i+1]<=mid (b[i+1]表示a[i+1]离散后的标记) 那么线段树i和线段树i+1的左边是完全相同的,根本不需要在建,只需要用指针指一下就好 //忘了在(=@__@=)哪里看的了 换一种解释,如果我们要修改左子树,那么右子树上的与上一个线段树相比不会变化,只需要指一下就好 /* 主席树 SPOJ DQUERY 查询区间有多少个不同的数。类似于之前树状数组离线的思路,在插入之前先进行判断 如果已经有了,把以前的先删掉再进行插入 hhh-2016-02-18 15:37:48 */ #include <functional> #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <map> #include <cmath> using namespace std; typedef long long ll; typedef long double ld; using namespace std; const int maxn = 100010; int tot; int n; int a[maxn],t[maxn]; int T[maxn],lson[maxn*30],rson[maxn*30],c[maxn*30]; int build(int l,int r) { int root = tot++; c[root] = 0; if(l != r) { int mid = (l+r)>>1; lson[root] = build(l,mid); rson[root] = build(mid+1,r); } return root; } //如果那里发生改变则兴建一个节点而非像平常修改那个节点的值 int update(int root,int pos,int val) { int newroot = tot++; int tmp = newroot; c[newroot] = c[root] + val; int l = 1,r = n; while(l < r) { int mid = (l+r)>>1; if(pos <= mid) { lson[newroot] = tot++; rson[newroot] = rson[root]; newroot = lson[newroot]; root = lson[root]; r = mid; } else { lson[newroot] = lson[root]; rson[newroot] = tot++; newroot = rson[newroot]; root = rson[root]; l = mid+1; } c[newroot] = c[root] + val; } return tmp; } int query(int root,int pos) { int l = 1, r = n; int ans = 0; while(pos > l) { int mid = (l+r)>>1; if(pos <= mid) { ans += c[rson[root]]; r = mid; root = lson[root]; } else { l = mid+1; root = rson[root]; } } return ans+c[root]; } int main() { while(scanf("%d",&n) !=EOF) { tot = 0; map<int,int> mp; for(int i = 1; i <= n; i++) scanf("%d",&a[i]); T[0] = build(1,n); for(int i =1; i <= n; i++) { if(mp.find(a[i]) == mp.end()) T[i] = update(T[i-1],i,1); else { int tt = update(T[i-1],mp[a[i]],-1); T[i] = update(tt,i,1); } mp[a[i]] = i; } int q; scanf("%d",&q); while(q--) { int l,r; scanf("%d%d",&l,&r); printf("%d\n",query(T[r],l)); } } return 0; }