poj2406 连续重复子串
Power Strings
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 41110 | Accepted: 17099 |
Description
Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).
Input
Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.
Output
For each s you should print the largest n such that s = a^n for some string a.
/* poj2406 连续重复子串 给你一个字符串,请问最多能由任意字符串重复多少次得到 最开始用的是DA算法 想的是枚举长度然后进行一下判断即可,只需要判断Rank[0]和Rank[k]是否为n-k (因为如果相等,0~k = k+1~2*k+1 .... 递推下去 整个串是0~k的子串不断 重复得到) 但是MLE.估计是处理RMQ时有问题,而且看了别人报告才发现这并不是最优方法。 因为我们求的是所有数到Rank[0],所以直接从rank[0]的位置往两边扫一遍就行了 但是DA算法nlog(n)好像会TLE- - 于是乎重新去搞了DC3的算法,才搞定 2600ms 而且感觉kmp更适合这个(看比人代码很短的样子) hhh-2016-03-13 18:11:02 */ #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> #include <stack> #include <map> using namespace std; typedef long long ll; typedef long double ld; #define lson (i<<1) #define rson ((i<<1)|1) const int maxn = 2000001; #define F(x) ((x)/3+((x)%3==1?0:tb)) #define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2) int wsf[maxn],wa[maxn],wb[maxn],wv[maxn],sa[maxn],Rank[maxn], height[maxn],f[maxn]; int str[maxn]; int c0(int *r,int a,int b) { return r[a]==r[b]&&r[a+1]==r[b+1]&&r[a+2]==r[b+2]; } int c12(int k,int *r,int a,int b) { if(k==2) return r[a]<r[b]||r[a]==r[b]&&c12(1,r,a+1,b+1); else return r[a]<r[b]||r[a]==r[b]&&wv[a+1]<wv[b+1]; } void sort(int *r,int *a,int *b,int n,int m) { int i; for(i=0; i<n; i++) wv[i]=r[a[i]]; for(i=0; i<m; i++) wsf[i]=0; for(i=0; i<n; i++) wsf[wv[i]]++; for(i=1; i<m; i++) wsf[i]+=wsf[i-1]; for(i=n-1; i>=0; i--) b[--wsf[wv[i]]]=a[i]; return; } void dc3(int *r,int *sa,int n,int m) { int i,j,*rn=r+n,*san=sa+n,ta=0,tb=(n+1)/3,tbc=0,p; r[n]=r[n+1]=0; for(i=0; i<n; i++) if(i%3!=0) wa[tbc++]=i; sort(r+2,wa,wb,tbc,m); sort(r+1,wb,wa,tbc,m); sort(r,wa,wb,tbc,m); for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++) rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++; if(p<tbc) dc3(rn,san,tbc,p); else for(i=0; i<tbc; i++) san[rn[i]]=i; for(i=0; i<tbc; i++) if(san[i]<tb) wb[ta++]=san[i]*3; if(n%3==1) wb[ta++]=n-1; sort(r,wb,wa,ta,m); for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i; for(i=0,j=0,p=0; i<ta && j<tbc; p++) sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++]; for(; i<ta; p++) sa[p]=wa[i++]; for(; j<tbc; p++) sa[p]=wb[j++]; return; } void getheight(int *r,int n)//n不保存最后的0 { int i,j,k=0; for(i=1; i<=n; i++) Rank[sa[i]]=i; for(i=0; i<n; i++) { if(k) k--; else k=0; j=sa[Rank[i]-1]; while(r[i+k]==r[j+k]) k++; height[Rank[i]]=k; } } int rm[maxn]; char ts[maxn]; void iniRMQ(int len) { int to = Rank[0]; rm[to] = maxn; for(int i = to - 1;i >= 0;i--) { if(height[i+1] < rm[i+1]) rm[i] = height[i+1]; else rm[i] = rm[i+1]; } for(int i = to+1;i <= len;i++) { if(height[i] < rm[i-1]) rm[i] = height[i]; else rm[i] = rm[i-1]; } } int solve(int len) { for(int i = 1;i <= len/2;i++) { if(len % i) continue; if(rm[Rank[i]] == len-i) return len/i; } return 1; } int main() { while(scanf("%s",ts) != EOF) { if(ts[0] == '.') break; int len = strlen(ts); for(int i = 0; i < len; i++) str[i] = ts[i]; str[len] = 0; dc3(str,sa,len+1,300); getheight(str,len); iniRMQ(len); printf("%d\n",solve(len)); } return 0; }