负载均衡

  负载均衡技术通过设置虚拟服务器IP(VIP),将后端多台真实服务器的应用资源虚拟成一台高性能的应用服务器,通过负载均衡算法,将用户的请求转发给后台内网服务器,内网服务器将请求的响应返回给负载平衡器,负载平衡器再将响应发送到用户,这样就向互联网用户隐藏了内网结构,阻止了用户直接访问后台(内网)服务器,使得服务器更加安全,可以阻止对核心网络栈和运行在其它端口服务的攻击。并且负载均衡设备(软件或硬件)会持续的对服务器上的应用状态进行检查,并自动对无效的应用服务器进行隔离,实现了一个简单、扩展性强、可靠性高的应用解决方案,解决了单台服务器处理性能不足,扩展性不够,可靠性较低的问题。
  系统的扩展可分为纵向(垂直)扩展和横向(水平)扩展。纵向扩展,是从单机的角度通过增加硬件处理能力,比如CPU处理能力,内存容量,磁盘等方面,实现服务器处理能力的提升,不能满足大型分布式系统(网站),大流量,高并发,海量数据的问题。因此需要采用横向扩展的方式,通过添加机器来满足大型网站服务的处理能力。比如:一台机器不能满足,则增加两台或者多台机器,共同承担访问压力。

  负载平衡最重要的一个应用是利用多台服务器提供单一服务,这种方案有时也称之为服务器农场。通常,负载平衡主要应用于Web网站,大型的Internet Relay Chat网络,高流量的文件下载网站,NNTP(Network News Transfer Protocol)服务和DNS服务。现在负载平衡器也开始支持数据库服务,称之为数据库负载平衡器。

  服务器负载均衡有三大基本Feature:负载均衡算法,健康检查和会话保持,这三个Feature是保证负载均衡正常工作的基本要素。

1、负载均衡算法(分发策略)

  1、轮询(RoundRobin)将请求顺序循环地发到每个服务器。当其中某个服务器发生故障,AX就把其从顺序循环队列中拿出,不参加下一次的轮询,直到其恢复正常。

  2、比率(Ratio):给每个服务器分配一个加权值为比例,根椐这个比例,把用户的请求分配到每个服务器。当其中某个服务器发生故障,AX就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

  3、优先权(Priority):给所有服务器分组,给每个组定义优先权,将用户的请求分配给优先级最高的服务器组(在同一组内,采用预先设定的轮询或比率算法,分配用户的请求);当最高优先级中所有服务器或者指定数量的服务器出现故障,AX将把请求送给次优先级的服务器组。这种方式,实际为用户提供一种热备份的方式。

  4、最少连接数(LeastConnection):AX会记录当前每台服务器或者服务端口上的连接数,新的连接将传递给连接数最少的服务器。当其中某个服务器发生故障,AX就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

  5、最快响应时间(Fast Reponse time):新的连接传递给那些响应最快的服务器。当其中某个服务器发生故障,AX就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

  6、哈希算法( hash): 将客户端的源地址,端口进行哈希运算,根据运算的结果转发给一台服务器进行处理,当其中某个服务器发生故障,就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。

  7、基于数据包的内容分发:例如判断HTTP的URL,如果URL中带有.jpg的扩展名,就把数据包转发到指定的服务器。

2、健康检查

  健康检查用于检查服务器开放的各种服务的可用状态。负载均衡设备一般会配置各种健康检查方法,例如Ping,TCP,UDP,HTTP,FTP,DNS等。Ping属于第三层的健康检查,用于检查服务器IP的连通性,而TCP/UDP属于第四层的健康检查,用于检查服务端口的UP/DOWN,如果要检查的更准确,就要用到基于7层的健康检查,例如创建一个HTTP健康检查,Get一个页面回来,并且检查页面内容是否包含一个指定的字符串,如果包含,则服务是UP的,如果不包含或者取不回页面,就认为该服务器的Web服务是不可用(DOWN)的。比如,负载均衡设备检查到172.16.20.3这台服务器的80端口是DOWN的,负载均衡设备将不把后面的连接转发到这台服务器,而是根据算法将数据包转发到别的服务器。创建健康检查时可以设定检查的间隔时间和尝试次数,例如设定间隔时间为5秒,尝试次数为3,那么负载均衡设备每隔5秒发起一次健康检查,如果检查失败,则尝试3次,如果3次都检查失败,则把该服务标记为DOWN,然后服务器仍然会每隔5秒对DOWN的服务器进行检查,当某个时刻发现该服务器健康检查又成功了,则把该服务器重新标记为UP。健康检查的间隔时间和尝试次数要根据综合情况来设置,原则是既不会对业务产生影响,又不会对负载均衡设备造成较大负担。

3、会话保持

  如何保证一个用户的两次http请求转发到同一个服务器,这就要求负载均衡设备配置会话保持。
  会话保持用于保持会话的连续性和一致性,由于服务器之间很难做到实时同步用户访问信息,这就要求把用户的前后访问会话保持到一台服务器上来处理。举个例子,用户访问一个电子商务网站,如果用户登录时是由第一台服务器来处理的,但用户购买商品的动作却由第二台服务器来处理,第二台服务器由于不知道用户信息,所以本次购买就不会成功。这种情况就需要会话保持,把用户的操作都通过第一台服务器来处理才能成功。当然并不是所有的访问都需要会话保持,例如服务器提供的是静态页面比如网站的新闻频道,各台服务器都有相同的内容,这种访问就不需要会话保持。
  绝大多数的负载均衡产品都支持两类基本的会话保持方式:源/目的地址会话保持和cookie会话保持,另外像hash,URL Persist等也是比较常用的方式,但不是所有设备都支持。基于不同的应用要配置不同的会话保持,否则会引起负载的不均衡甚至访问异常。我们主要分析B/S结构的会话保持。

3.1、基于B/S结构的应用

  对于普通B/S结构的应用内容,例如网站的静态页面,可以不用配置任何的会话保持,但是对于一个基于B/S结构尤其是中间件平台的业务系统来说,必须配置会话保持,一般情况下,我们配置源地址会话保持可以满足需求,但是考虑到客户端可能有上述不利于源地址会话保持的环境,采用Cookie会话保持是一个更好的方式。Cookie会话保持会把负载均衡设备选择的Server信息保存在Cookie中发送到客户端,客户端持续访问时,会把该Cookie带来,负载均衡器通过分析Cookie把会话保持到之前选定的服务器。Cookie分为文件Cookie和内存cookie,文件cookie保存在客户端计算机硬盘上,只要该cookie文件不过期,则无论是否重复关闭开放浏览器都能保持到同一台服务器。内存Cookie则是把Cookie信息保存在内存中,Cookie的生存时间从打开浏览器访问开始,关闭浏览器结束。由于现在的浏览器对Cookie都有一定默认的安全设置,有些客户端可能规定不准使用文件Cookie,所以现在的应用程序开发多使用内存Cookie。
  然而,内存Cookie也不是万能的,比如浏览器为了安全可能会完全禁用Cookie,这样Cookie会话保持就失去了作用。我们可以通过Session-id来实现会话保持,即将session-id作为url参数或者放在隐藏字段<input type="hidden">中,然后分析Session-id进行分发。
  另一种方案是:将每一会话信息保存到一个数据库中。由于这个方案会增加数据库的负载,所以这个方案对性能的提高并不好。数据库最好是用来存储会话时间比较长的会话数据。为了避免数据库出现单点故障,并且提高其扩展性,数据库通常会复制到多台服务器上,通过负载均衡器来分发请求到数据库服务器上。
  基于源/目的地址会话保持其实不太好用,因为客户可能是通过DHCP,NAT或者Web代理来连接Internet的,其IP地址可能经常变换,这使得这个方案的服务质量无法保障。
NAT(Network Address Translation,网络地址转换):当在专用网内部的一些主机本来已经分配到了本地IP地址(即仅在本专用网内使用的专用地址),但现在又想和因特网上的主机通信(并不需要加密)时,可使用NAT方法。这种方法需要在专用网连接到因特网的路由器上安装NAT软件。装有NAT软件的路由器叫做NAT路由器,它至少有一个有效的外部全球IP地址。这样,所有使用本地地址的主机在和外界通信时,都要在NAT路由器上将其本地地址转换成全球IP地址,才能和因特网连接。

 

 

 

 

感谢:

https://www.cnblogs.com/xzwblog/p/7255364.html

 

posted @ 2020-12-07 14:31  PrintY  阅读(173)  评论(0编辑  收藏  举报