记忆化搜索
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
InputThe input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.OutputPrint the value for w(a,b,c) for each triple.Sample Input
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
Sample Output
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
#include<iostream> #include<cstring> #include<cstdio> using namespace std; typedef long long LL; const int N = 20 + 5; const int INF = 0x3f3f3f3f; LL dp[N][N][N]; LL Solve(LL a, LL b, LL c){ if(a <= 0 || b <= 0 || c <= 0) return 1; if(a > 20 || b > 20 || c > 20) return 1048576; if(dp[a][b][c] != -1) return dp[a][b][c]; if(a < b && b < c) return dp[a][b][c] = Solve(a, b, c-1) + Solve(a, b-1, c-1) - Solve(a, b-1, c); return dp[a][b][c] = Solve(a-1, b, c) + Solve(a-1, b-1, c) + Solve(a-1, b, c-1) - Solve(a-1, b-1, c-1); } int main(){ LL a, b, c; memset(dp, -1, sizeof(dp)); while(scanf("%lld %lld %lld", &a, &b, &c) && (a != -1 || b != -1 || c != -1)){ LL ans = Solve(a, b, c); printf("w(%lld, %lld, %lld) = %lld\n", a, b, c, ans); } }